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Abstract. This paper takes a dynamical systems perspective on the se-
mantic structures of dynamic epistemic logic (DEL) and asks the ques-
tion which orbits DEL-based dynamical systems may produce. The class
of dynamical systems based directly on action models produce very lim-
ited orbits. Three types of more complex model transformers are equiva-
lent and may produce a large class of orbits, suitable for most modeling
purposes.
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1 Introduction

When modeling socio-epistemic phenomena, working with the temporally local
models of dynamic epistemic logic (DEL) is both a blessing and a bane. It is a
blessing as both epistemic state models and their updates are small relative to a
fully explicated epistemic temporal structure. This eases both model construc-
tion and comprehension. It is a bane as the small models are incomplete: each
is an individual time-step while we seek to model temporally extended dynam-
ics. To form a `complete model', we must specify the `temporal glue' that ties
individual epistemic states together to dynamics.

This `temporal glue' is often presented informally in the DEL literature by
way of a natural language problem description, typically involving conditional
tests to determine which update to apply. Methodologically, this leaves modelers
with a small gap: when modeling information dynamics using the semantic tools
of DEL, what mathematical object shall we identify as the model of our target
phenomenon?

It is an advantage of the DEL approach that a full sequential model need
not be speci�ed from the outset, but a drawback that a complete formalization
of the problem under investigation is missing. Ideally, such `complete models'
should be both

1. Computably tractable (for each step), and

2. Informative (model the problem, not just describe the solution).
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The �rst desideratum is for implementation purposes. By the second, it is sought
that eventual implementations are interesting: models that formalize problems
without requiring they be solved �rst, allows one to draw informative conclusions
about the modeled phenomena. The informal approach is typically informative.

This paper suggests a dynamical systems approach to specifying `complete
models' of information dynamics and provides some preliminary results.1 As a
(discrete time) dynamical system consists of only a state space X and a map
τ : X −→ X iteratively applied, the future development of the dynamics depend
only on the current state and the map τ . Dynamical systems thus provide a
formal container for dynamical models in the local spirit of DEL. This stands in
contrast to the only formal alternative, DEL protocols [3], which de�ne dynamics
globally. This approach is discussed in Section 3.

Dynamical systems are simple but may therefore also be limiting. E.g., if
one's chosen model transformer class contains only action models, then the set
of scenarios that can be modeled is very narrow: the same action model will
be reapplied by the dynamical system, scenarios such as the well-known Muddy
Children example [10] are among the unrepresentable phenomena. This provides
a motivation for seeking broader classes of model transformers, the topic of
Section 5. Three methods for de�ning complex model transformers are de�ned,
being multi-pointed action models, programs and problems. The main technical
results compare these approaches with respect to the orbits they can produce
when used in dynamical systems.

2 DEL Preliminaries

Let be given a �nite, non-empty set of propositional atoms Φ and a �nite, non-
empty set of agents, A.

De�nition 1 (Kripke Model). A Kripke model is a tuple M = (JMK , R, J·K)
whereJMK is a non-empty set of states;

R : A −→ P(S × S) is an accessibility function;J·K : Φ −→ P(S) is a valuation function.

A pair (M, s) with s ∈ JMK is called an epistemic state.

De�nition 2 (Language, Semantics). Where p ∈ Φ and i ∈ A, de�ne a
language L by

φ := ⊤ | p | ¬φ | φ ∧ φ | Kiφ

with non-propositional formulas evaluated over epistemic state (M, s) by

(M, s) |= Kiφ i� ∀t ∈ Ri(s), (M, t) |= φ.

1 The approach to dynamical systems taken here thus di�ers from that [14], which
mainly seeks modal logical descriptions of dynamical system concepts.



With a normal modal logical language like L, the natural notion of equality
of epistemic states is bisimulation:

Theorem 1 (Hennessy-Milner, [4], Thm.2.24). Let M and M ′ be image-
�nite, i.e., ∀s ∈ JMK ,∀i ∈ A, the set {t : (s, t) ∈ Ri} is �nite. Then for all
s ∈ JMK , s′ ∈ JM ′K, s and s′ are modally equivalent i� (M, s) and (M ′, s′) are
bisimilar.

When working with �nite models, L is strong enough to distinguish any two
non-bisimilar models:

Theorem 2 ([11], Thm.32). Let (M, s) and (M ′, s′) be �nite epistemic states
that are not n-bisimilar. Then there exists δ ∈ L such that (M, s) |= δ and
(M ′, s′) ̸|= δ.

Dynamics are introduced by transitioning from one epistemic state to the
next:

De�nition 3 (Model Transformer). Let M be the set of epistemic states
based on A. A model transformer is a (possibly partial) function τ : M −→M.

Several model transformers have been suggested in the literature, the most
well-known being public announcement, !φ [12]. Primary to this paper is the rich
class of action models [2] with postconditions [8].

De�nition 4 (Action Model). An action model is a tuple Σ=(JΣK,R,pre,post)
whereJΣK is a �nite, non-empty set of actions;

R : A −→ P(JΣK × JΣK) is an accessibility function;

pre : JΣK −→ L is a precondition function;

post : JΣK −→ {
∧n

i=0 φi ⊭ ⊥ : φi ∈ {⊤, p,¬p : p ∈ Φ}} is a postcondition

function.

A pair (Σ, σ) with σ ∈ JΣK is called an epistemic action.

The precondition of an action σ speci�es the conditions under which σ is ex-
ecutable; the postconditions specify how σ sets the values of select atoms. If
post(σ) = ⊤, then σ changes nothing.

An epistemic state is informationally updated with an epistemic action by
taking their product:

De�nition 5 (Product Update). The product update of epistemic state
(M, s) = (JMK , R, J·K , s) with epistemic action (Σ, σ) = (JΣK ,R, pre, post, σ)
is the epistemic state

(M ⊗Σ, (s, σ)) = (JM ⊗ΣK , R′, J·K′ , (s, σ))
whereJM ⊗ΣK = {(s, σ) ∈ JMK × JΣK : (M, s) |= pre(σ)}

R′
i = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri}JpK′ = {(s, σ) :s ∈ JpK, post(σ) ⊭ ¬p} ∪ {(s, σ) :post(σ) ⊨ p}.



In combination, an epistemic action (Σ, σ) and product update ⊗ thus de�ne a
model transformer. Denote the class of such transformers by Σ. Each τ ∈ Σ has
the following pleasant property:

Fact (Bisimulation Preservation). ∀τ ∈ Σ, if (M, s) and (M ′, s′) are bisim-
ilar, then so are τ(M, s) and τ(M ′, s′).

Σ is a very powerful class: for any �nite epistemic state (M, s), it contains a
transformer that will map (M, s) to any other �nite epistemic state (M ′, s′), as
long as no agents with empty access in M has non-empty access in M ′ and as
long asM andM ′ di�er only in the truth value of a �nite number of atoms. The
restrictions are due to the `and'-condition used in de�ning R′

i in product update
and the �nite conjunction used in de�ning postcondition maps. If the directed
relation given by these restrictions holds from (M, s) to (M ′, s′), then call the
transition from the �rst to the second reasonable:

De�nition 6 (Reasonable Transition). Let (M, s)= (JMK , R, V, s) and
(M ′, s′) = (JM ′K , R′, V ′, s′) be two epistemic states. Then the transition from
(M, s) to (M ′, s′) is reasonable i�

1. it preserves insanity: there exists a submodel M s of M such that s ∈ JM sK
and ∀i ∈ A, if R′

i ̸= ∅, then Ri is serial in M s, and
2. it invokes �nite ontic change:

{p : JpK ̸= ∅ and JpK ̸= JMK}
∪ {p : JpK = ∅} \

{
p : JpK′ = ∅

}
∪{p : JpK = JMK} \{p : JpK′ = JM ′K}

is �nite.

Theorem 3 (Arbitrary Change, [8], Prop.3.2). Let the transition from �-
nite (M, s) to �nite (M ′, s′) be reasonable. Then there exists a (Σ, σ) ∈ Σ such
that (M, s)⊗ (Σ, σ) and (M ′, s′) are bisimilar.

3 DEL Protocols

One framework which could be used to construct `complete models' is DEL
protocols [3,7,13,15].

De�nition 7 (DEL Protocol). Let Σ∗ be the set of all �nite sequences of
transformers τ ∈ Σ. A set P ⊆ Σ∗ is a (uniform) DEL protocol i� P is closed
under non-empty pre�xes.

A DEL protocol speci�es which model transformers may be executed at a
given time�whether they can be executed depends on the model transformers,
e.g. their preconditions.

Where P is a DEL protocol and σ = (τ1, ..., τn) ∈ P, set
(M, s)σ := τn◦· · ·◦τ1(M). From an initial model (M, s) and time 0, a DEL proto-
col P produces a set of possible evolutions to each time n, namely



{(M, s)σ : len(σ) = n}. Notice that len(σ) = n does not imply that (M, s)σ ex-
ists: one of the transformers from σ may have been unexecutable at some earlier
stage.

DEL protocols are dismissed as suitable for constructing `complete models' as
the results will be unexecutable, incorrect or uninformative. To see this, assume
that some phenomenon that involves multiple model transformers
T = {τ1, ..., τn}, as e.g. Muddy Children does.

If the DEL protocol used is T ∗ (the set of all �nite strings sequences of
transformers from T ) a very nice model is obtained: it is applicable to multiple
initial states with varying mud distributions, and it may accordingly be used to
obtain answers to questions about e.g. how the scenario unfolds as a function
of the number of muddy children. Alas, T ∗ is in�nite and as a model therefore
unexecutable: given some initial state (M, s) it will not be possible to run T ∗

on (M, s) in �nite time as the input to any function that is to determine the set
{(M, s)σ : len(σ) = 1} will be in�nite.

To obtain an executable model, T ∗ could be pruned to obtain a �nite DEL
protocol T ⊆ T ∗, e.g. by setting some upper bound on the length of σ ∈ T. The
risk associated with this move (pruning) is that the model becomes useless or
uninformative: if the upper bound is set too low, the model will terminate too
soon and not provide a correct output; to ensure the upper bound high enough,
the problem must have been solved beforehand, leading to an uninformative
model. In the extreme case where the only included maximal σ is `the correct
one' given some natural language protocol and initial state, a descriptive model
is produced, but such a `gold in, gold out' model is of little interest from an
investigative perspective.

4 DEL and Dynamical Systems

Given Theorem 3, one might expect that dynamical systems based on the class
of action models Σ would allow modeling of a plethora of phenomena. Surpris-
ingly, not even even simple and well-known epistemic puzzles such as Muddy
Children can be modeled by this class. To see this, let us �rst clarify the notion
of dynamical system.

As standardly de�ned [6], a dynamical system is a tuple D = (X,T, E) where
X is set, called the state space, T ⊆ R is a time set which forms an additive
semi-group (t1, t2 ∈ T ⇒ t1 + t2 ∈ T ) and E : X × T → X is an evolution map
satisfying that E(x, 0) = 0 and E(E(x, t1), t2) = E(x, t1 + t2).

2

To obtain a state space for DEL-based dynamical systems, it is natural,
given Theorem 1, to equate bisimilar epistemic states, and let the state space
consist of each bisimulation type's smallest representative. For an epistemic state
(M, s), this representative is given by (M, s)'s generated submodel rooted at s's
bisimulation quotient (M [s]/ρM , [s]Mρ ), see [11], Sec. 3.6. Setting

M := {(M [s]/ρM , [s]Mρ ) : (M, s) is an epistemic state},
2 Erratum to published version: �E(x, 0) = 0� should of course be �E(x, 0) = x�.



a class is obtained that contains a canonical representative of each epistemic
state, each unique up to isomorphism.

As DEL updates are discrete and non-invertible, the suitable time set for a
DEL-based dynamical system is Z+. The evolution function of any dynamical
system D = (X,Z+, E) with time set Z+ may be de�ned by the iterations of
a function e : X → X by E(x, n) = en(x). Given the chosen state space, the
suitable class of such functions e is the set of model transformers τ : M → M,
denoted by T.

Given these considerations, the following de�nition of DEL-based dynamical
systems is obtained:

De�nition 8 (DEL-based Dynamical System). A DEL-based dynamical
system is a pair D = (X, τ) where X ⊆ M and τ : X → X.
The orbit of D from initial state x0 ∈ X is the sequence o(D,xo) = (τn(x0))n∈Z+ .

Remark. Given an epistemic action τ ∈ Σ, x ∈ M does not imply that
τ(x) ∈ M. There will however be a x′ ∈ M that is bisimilar to τ(x). Given
Fact 1, each τ ∈ Σ may be identi�ed with a τ ′ ∈ T by if τ(x) = (M, s), then
τ ′(x) = (M [s]/ρM , [s]Mρ ). Henceforth, when executing an epistemic action (Σ, σ)
in x ∈ M, it is thus assumed that x⊗ (Σ, σ) ∈ M.

It is immediately clear that any dynamical system D = (X, τ) with τ ∈ Σ
will be limited in its orbits. In particular, where s0 is the actual state in the initial
epistemic state x0 and σ0 is the actual state of τ , then for any n, the actual state
of τn(x0) will be of the form (...(s0, σ0), ..., σ0). Consequently, any phenomenon
that involves the occurrence of more than one actual action is unmodelable. As
most phenomena do involve shift in the performed action, e.g. by a shift in the
announcement made, there is a motivation for seeking out a more general class
of model transformers.

5 Complex Model Transformers

The limitation of DEL-based dynamical systems does not stem from action mod-
els, but rather from the fact that their usage is not controlled. This problem is
solved by DEL protocols or update streams; simply specify at which time which
action model should be executed. However, this requires a description of the
evolution before execution, leaving little of the local DEL spirit intact.

A natural way to specify which transformer should be applied next that still
remains local in spirit is by using a map π : M −→ T. Composing such a π with
the model transformers it picks at each epistemic state is then again a model
transformer τπ : M −→ M given by τπ(x) = π(x)(x).

To be interesting from modeling and implementation perspectives, such π
must be �nitely representable. This puts constraints on the dynamical systems
de�nable, but, as will be shown, the restriction is still to a vast class of such
systems.

We focus on three ways of specifying maps π, each picking model transformers
from Σ. The choice to restrict attention to maps picking transformers from



Σ is warranted by Theorem 3: As basic transformers, this class has su�cient
transformational power to construct a rich class of dynamical systems.

The �rst type is closely related to the (knowledge-based) programs known
from interpreted systems [10], though de�ned to specify transformers based on
the global, epistemic state rather than specifying sub-actions based on agents'
local states:3

De�nition 9 (Program). A (�nite, deterministic,(L,Σ)) program is a �nite
set of formula-transformer pairs

P = {(φi, τi) : φi ∈ L, τi ∈ Σ}

where ∀i, j if φi ̸= φj and (φi, τj), (φj , τj) ∈ P , then M |= φi ∧ φj → ⊥.4

Each program P gives rise to a model transformer τP given by τP (x) = τi(x)
if x |= φi and (φi, τi) ∈ P . Denote this class by P.

Each program may be read as a set of conditional tests of the form if φi, do τi,
in form similar to the informal speci�cations often used in DEL literature.

The explicit speci�cation of programs stands in contrast with the implicit
speci�cation of the second transformer type, problems, where each instruction
may be read if φi, obtain ψi. Problems as de�ned here are related to epistemic
planning problems, also know from the DEL literature [5].

De�nition 10 (Problem). A (�nite (L,Σ)) problem is a pair

Π = (Q,ΣΠ)

where Q = {(φi, ψi) : φi, ψi ∈ L} is a �nite set of formula-formula pairs and
ΣΠ ⊂ Σ is a �nite set of model transformers with an associated strict order <.

A solution to Π = (Q,T ) at epistemic state x is a model transformer τ ∈ T
such that ∀(φi, ψi) ∈ Q, if x |= φi, then τ(x) |= ψi. Denote the set of solution to
Π at x by Π(x).

Each problem Π gives rise to a model transformer τΠ given by
τΠ(x) = min<Π(x). Denote this class by Π.

The model transformer τΠ is de�ned using the strict order < on ΣΠ to ensure
that τΠ is a function: nothing in the de�nition ensures that |Π(x)| ≤ 1.

The last model transformer type to be considered is a slight generalization
of action models [1], where each such may have multiple actual states. In the
de�nition it is required, non-standardly, that the preconditions of the actual
states must be mutually exclusive. This is to ensure that executing a multi-
pointed action model using product update remains a single-pointed epistemic
state.

3 Programs based on agents' local states is also at least to some degree feasible in a
DEL setting, using parallel action model composition [9].

4 ERRATUM: This line should read �if (φi, τi), (φj , τj) ∈ P and τi ̸= τj , then M |=
φi ∧ φj → ⊥�



De�nition 11 (Multi-Pointed Epistemic Actions). A (�nite, determinis-
tic) multi-pointed epistemic action is an epistemic action (Σ, σ) with σ replaced
by a �nite, non-empty set S ⊆ JΣK, where for each σ, σ′ ∈ S, if σ ̸= σ′, then
M |= pre(σ) ∧ pre(σ′) → ⊥.

Applied using product update, each (Σ,S) is a model transformer
τ : (M⊗Σ, (s, S)) 7→ (JM ⊗ΣK , R′, J·K′ , (s, σi)) where (M, s) |= pre(σi). Denote
this class by Σ+.

With mutually exclusive preconditions, a multi-pointed action model (Σ,S) en-
codes a map π : M −→ T with image {(Σ, σ) : σ ∈ S} by π(x) = (Σ, σ),
x |= pre(σ).

6 Results

Note initially that DEL-based dynamical systems fair better than DEL proto-
cols in regard to executability and informativity. DEL-based dynamical systems
resting on either a program or a multi-pointed action model are step-wise com-
putable, as both transformer types are �nite and therefore require only check of
a �nite set of formulas at each (M, s). The case for problems must be checked
against [5]. Moreover, DEL-based dynamical systems will provide informative
models: once a system is de�ned, one may start investigating how its orbits be-
have as a function of initial state without having pre-solved the encoded problem.

The �rst main result shows that dynamical systems based on the class Π
of problem-based model transformers can model any reasonable, deterministic,
�nite or cyclic sequence of �nite epistemic states. Problem-based dynamical sys-
tems can thus model a large class of phenomena.

The proof of Proposition 1 is by brute force. The construction results in a
large, cumbersome problem fully pre-encoding the target orbit. For many mod-
eling purposes, far more economical complex model transformers will do.

De�nition 12 (Finite Variation, Deterministic). Let x = (x0, x1, ...) be a
sequence of epistemic states from M. x has �nite variation i�

1. x is �nite, or
2. ∃n,m, k∈ Z+\{0} : xk = xk+m for all k ≥ n.

x is deterministic i� if xk, xk+1, xm ∈ x and xk = xm, then xm+1 ∈ x and
xk+1 = xm+1.

Proposition 1 (Arbitrary Orbits). Let the sequence x = (x0, x1, ...) of �nite
epistemic states be deterministic, with �nite variation and where the transition
between each xi and xi+1 is reasonable. Then there exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D,x0) = x.

Proof. By constructing a problem Π = (Q,ΣΠ) that gives rise to the sought τΠ .
For each xi, xj ∈ x, xi ̸= xj , let δi,j be a formula that distinguishes xi from

xj such that xi |= δi,j and xj ̸|= δi,j ; this δi,j exists by Theorem 2. As x has



�nite variation, δi :=
∧

j:xj∈x\{xi} δi,j is a formula that distinguishes xi from all
other xj ∈ x. For each xi, xi+1 ∈ x, let τi ∈ Σ be a model transformer such that
τi(xi) = xi+1; this exists by Theorem 3.

Let Q be the smallest set that for each xi, xi+1 ∈ x contains (δi, δi+1). Let
ΣΠ be the smallest set that for each xi, xi+1 ∈ x contains τi. Both Q and ΣΠ are
�nite by the assumption of �nite variation, so Π = (Q,ΣΠ) is a �nite program,
so τΠ is a model transformer.

That o(D,x0) = x when D = (M, τΠ) is shown by induction on xn:
Base: τΠ

0(x0) = x0. Step: Assume τΠ
n(x0) = xn. If x = (x0, ..., xn), then

o(D,x0) = x as (δn, φ) ̸∈ Q for any φ, by determinism of x, so τΠ(xn) is
unde�ned. If xn+1 ∈ x, then (δn, δn+1) ∈ Q and τn ∈ ΣΠ . By construction,
Π(xn) = τn, so τΠ(x) = xn+1. ⊓⊔

Proposition 2 (Problem Orbit Properties). Let o(D,x0) = x with
D = (M, τΠ), τΠ ∈ Π. Then x is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. x is deterministic as τΠ is a function; each transition is reasonable as
xi+1 = τ(xi) for some τ ∈ Σ.

Propositions 1 and 2 cannot be strengthened to a characterization result as not
all problem-based dynamical system have �nite variation:

Proposition 3 (In�nite Variation). There exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D,x0) does not have �nite variation.

Proof. Let D = (M, τΠ) with problem Π = ({(⊤,⊤)}, {(Σ, σ1)}). This trivial
problem has unique solution (Σ, σ1) for all (M, s) ∈ M. Hence, for all x ∈ M,
τΠ(x) = (M, s)⊗ (Σ, σ1).

Let M and Σ given by

Then o(D, (M, s)) does not have �nite variation: for each iteration of τΠ , the
state not satisfying p will split, inserting a new p state as it's child with σ2:

All other states have only one child, with σ3.
In all further applications of (Σ, σ1), the circular structure seen in (M, s)⊗

(Σ, σ1) is preserved, only with an additional p state. No two such models are
bisimilar, and hence the orbit does not have �nite variation. ⊓⊔

The second main result shows that also program-based dynamical systems
and dynamical systems based on multi-pointed action models can produce a vast
class of orbits.



Proposition 4 (Equivalence). Let x = (x0, x1, ...) be a sequence of epistemic
states. Then

1. ∃τΠ ∈ Π such that for D = (M, τΠ), o(D,x0) = x.
⇑

2. ∃τP ∈ P such that for D = (M, τP ), o(D,x0) = x.
⇕

3. ∃τΣ+ ∈ Σ+ such that for D = (M, τΣ+), o(D,x0) = x.

If x = (x0, x1, ...) has �nite variation and x0 is �nite, then the three statements
are equivalent.

Proof.

Case: 2. ⇒ 1. Let D = (M, τP ), τP ∈ P with o(D,x0) = x = (x0, x1, ...) be
given.

Construct a problem Π = (Q,ΣΠ) as follows: Let Q be the smallest set
that for each (φi, τi) ∈ P contains (φi,⊤). Let ΣΠ be the smallest set that for
each (Σ, σ) ∈ ΣP contains (Σ, σ∗) identical to (Σ, σ) in all respects except that
pre(σ∗) = pre(σ) ∧ φi. As P is �nite, Π = (Q,ΣΠ) is a �nite problem; τΠ is a
model transformer as the φi's of P are mutually exclusive.

Then o((M, τΠ), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then
xi+1 = τ(xi) for some τ = (Σ, σ) such that for some φ, (τ, φ) ∈ P . Hence
for some φ, (τ, φ) ∈ P, it holds that xi |= φ. Given the preconditions and that
(φ,⊤) ∈ Q, τ∗ = (Σ, σ∗) ∈ ΣΠ will be the only solution to Π at xi. As xi |= φ,
τ∗(xi) = τ(xi).

Assume x = (x0, ..., xn) is �nite. Then either xn ̸|= φi for all (φi, τi) ∈ P or
if xn |= φi for (φi, (Σ, σ)) ∈ P , then xn ̸|= pre(σ). In the �rst case, xn ̸|= φi for
all (φi,⊤) ∈ Q; in the second, xn ̸|= pre(σ∗). In either case, τΠ(xn) is unde�ned.

Case: 2. ⇒ 3. Let D = (M, τP ), τP ∈ P with o(D,x0) = x = (x0, x1, ...) be
given. Let ΣΠ be as in the case 2. ⇒ 1. De�ne a multi-pointed action model
(Σ+, S) by Σ+ =

⊎
{Σ : (Σ, σ∗) ∈ ΣΠ} and S = {σ∗ : (Σ, σ∗) ∈ ΣΠ}. Let τΣ+

be the associated model transformer.
Then o((M, τΣ+), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then

xi+1 = τ(xi) for some τ = (Σ, σ) such that for some φ, (τ, φ) ∈ P . Hence
for some φ, (τ, φ) ∈ P, it holds that xi |= φ ∧ pre(σ), so by construction,
xi |= pre(σ∗). Hence only the submodel (Σ, σ∗) of Σ+ is executable at xi, so
τΣ+(xi) = τP (xi).

If x = (x0, ..., xn) is �nite, then either xn ̸|= φi for all (φi, τi) ∈ P or if
xn |= φi for (φi, (Σ, σ)) ∈ P , then xn ̸|= pre(σ). In the �rst case, xn ̸|= pre(σ∗)
for all (Σ, σ∗) ∈ Σ+; in the second, xn ̸|= pre(σ∗). In either case, τΣ+(xn) is
unde�ned.

Case: 3. ⇒ 2. Let D = (M, τΣ+), τΣ+ ∈ Σ+ with o(D,x0) = x = (x0, x1, ...)
be given. Let the Σ+ of τΣ+ be Σ+ = (Σ,S) and create from it a set of |S| single-
pointed action models A = {(Σ, σ) : σ ∈ S}. Create a program
P = {(pre(σ), (Σ, σ)) : (Σ, σ) ∈ A}. P is both �nite and deterministic.



Then o((M, τP ), x0) = o((M, τΣ+), x0): Assume xi, xi+1 ∈ x. Then
xi |= pre(σ) for exactly one σ ∈ S. As (pre(σ), (Σ, σ)) ∈ P , τP (xi) = τΣ+(xi).

If If x = (x0, ..., xn) is �nite, then xn ̸|= pre(σ) for all σ ∈ S. Hence for all
(φ, τ) ∈ P , xn ̸|= φ, so τP (xn) is unde�ned.

Case: 1. ⇒ 2., if x = (x0, x1, ...) has �nite variation and x0 is �nite: Let
D = (M, τΠ), τΠ ∈ Π = (Q,ΣΠ) with o(D,x0) = x = (x0, x1, ...) having �nite
variation. Brute force construct a program using characteristic formulas: let δi
be the characteristic formula of xi ∈ x. For each pair xi, xi+1 ∈ x, there is a
unique τi ∈ ΣΠ such that τi(xi) = xi+1. Let P = {(δi, τi) : xi ∈ x}. As x has
�nite variation, P is �nite and gives rise to a model transformer τP .

Then o((M, τP ), x0) = o((M, τΠ), x0): Assume xi, xi+1 ∈ x. Then
(δi, τi) ∈ P , so τP (xi) = xi+1. If x = (x0, ..., xn) is �nite, then by Proposi-
tion 2, for no xi, i < n is xi = xn. Hence (δn, τ) ̸∈ P , for any τ . Hence τP (xn) is
unde�ned. ⊓⊔
Corollary 1 (Orbit Properties). For any dynamical system D = (M, τ) with
τ ∈ P∪Σ+ and any x0 ∈ M, o(D,x0) is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. Let D be as described. By Proposition 4 there exists a D′ = (M, τΠ),
τΠ ∈ Π, that recreates o(D,x0). The corollary then follows from Proposition 2.

7 Conclusion

The main contributions are

� that although dynamical systems de�ned using epistemic action models can
produce only very limited orbits, dynamical systems that control when par-
ticular action models are used may produce orbits su�cient for most mod-
eling purposes, and

� that the three methods for controlling which action models are applied are
equivalent under the presented conditions.

The �rst result shows that DEL-based dynamical systems provide a rich frame-
work for producing mathematically speci�ed models of information dynamics.
The latter shows that there are multiple ways of extending the DEL toolbox
compatible with modeling using dynamical systems.

It would be interesting to make an in-depth comparison between DEL proto-
cols and DEL-based dynamical systems, comparing the orbits they may produce
and under which conditions such might be equivalent. Two considerations here
involve the �nite nature of DEL protocols, guaranteeing �nite variation not
guaranteed by DEL-based dynamical systems, and the `bisimulation respecting'
behavior of DEL-based dynamical systems, which is not necessarily followed by
DEL protocols. Obtaining such results could be used to link DEL-based dynam-
ical systems with Epistemic Temporal Logic via the results in [3].

Moreover, it would be interesting to investigate any deeper relationship be-
tween dynamic epistemic logic and dynamical systems; the latter �eld is well-
developed, and one could envision that methods and results may be transferable.
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