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Abstract. A model of informational cascades is suggested with belief revision

steps explicated using dynamic epistemic logic augmented with transition rules

which specify the next action model update based on the current state. A

notion of aggregated beliefs is used for information accumulation, based on

which agents make choices and reason about others’ belief construction. The

informal reasoning assumed of agents in textbook treatments of information

cascades is hereby represented formally. A self-propagating system is defined

using transition rules, and it is shown that it does not terminate until the last

agent has acted. Necessary and sufficient conditions (on the string of private

signals) for informational cascades relative to the system are identified.

Keywords: informational cascades, social dynamics, social proof, dynamic

epistemic logic

In the 1992 paper [4] Bikchandani et al. show how it may be rational for Bayesian

agents in a sequential decision making scenario to ignore their private informa-

tion and conform to the choices made by previous agents. If this occurs, an agent

ignoring her private information is said to be in a cascade.

To illustrate, consider the following example, based on [3,8]: a set of agents

must decide which of two restaurants to choose, one lying on the left side of the

street, one on the right, with one being the better – L or R. Initially, agents have

no information about which; each agent i has prior probabilities Pri(L) = Pri(R).
Every agent has two choices: either to go to the restaurant on the left, li , or to go the

one on the right, ri . All agents prefer to go to the better restaurant, and are punished

for making the wrong choice, specified by pay-offs ui(li , L) = ui(ri , R) = v1 > 0 and

ui(li , R) = ui(ri , L) = v2 < 0 with v1 + v2 = 0.

Before choosing, every agent receives a private signal indicating that either the

restaurant on the left (Li) or the one on the right (Ri) is the better one. The signals
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are assumed to be equally informative and positively correlated with the true state,

in the sense that Pr(Li |L) = Pr(Ri |R) = q > .5 and Pr(Li |R) = Pr(Ri |L) = 1 −
q. Given this setup, rational agents will follow their private signal, the majority

choosing the better restaurant.

If agents are assumed to choose sequentially and observe the choice of those choos-

ing before them, a cascade may result, possibly leading the majority to pick the worse

option. The argument for this [4] rests on higher-ordering reasoning not represented

in the Bayesian framework, and goes as follows. Given either L1 or R1, agent 1 will

choose as her signal indicates, hereby revealing her signal to all subsequent agents.

Agent 2 therefore as two pieces of information: his own signal together with that

deduced from the choice of 1. If 2 receives the same signal as 1, he will make the

same choice; given two opposing signal, assume he will invoke a self-biased tie-

breaking rule, and go by his own signal. In both cases, 2’s choice will also reveal his

private signal to all subsequent agents. Assume that 1 and 2 received signals L1, L2.

Then no matter which signal 3 receives, she will choose l3: agent 3 will have three

pieces of information, either L1, L2, L3 or L1, L2, R3. In either case, when condition-

alizing on these, the posterior probability of L being the true state will be higher

than that of R. So 3 will choose l3, and thereby be in a cascade. Further, agent 4

will also be in a cascade: as 3 chooses l3 no matter what, her choice does not reveal

her private signal, why also 4 has three pieces of information, either L1, L2, L4 or

L1, L2, R4. 4 is thus in the same epistemic situation as 3, and will choose l4. As 4

is in a cascade, his choice will not reveal his private signal, and the situation thus

repeats for all subsequent agents.

Notice that cascades may not be truth conducive: there is a Pr(L1|R) · Pr(L2|R)
risk that all agents will choose the wrong restaurant – e.g., if signals are correct

with probability 2
3
, all agents choose wrong with probability 1

9
.

Aim and Methodology. We construct a formal model that completely represents

the reasoning made by agents in the sequential setup, for any input string of private

signals. The type of model constructed may be compared to a dynamic epistemic

logic variant of a state machine, in lack of terms called a DEL machine. A DEL ma-

chine operates by having for each state (Kripke model) some set of transition rules

which as a function of the current state pick the next update to be invoked, hereby

specifying the ensuing state. It is initiated from some initial state and terminates

when an end condition is met.

The informational cascades system (IC) constructed captures the following four

elements of each agent’s turn: i) earlier agents’ actions are observed from which ii)
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their private signals (beliefs) are deduced and combined with iii) the private signal

(belief) of the current agent after which iv) the chosen action is executed, observed

by all.

IC diverges from the model of [4] in a number of aspects: it is not probabilistic,

but qualitative; related, information aggregation is not done by Bayesian condition-

alization, but by the aggregation of perceived beliefs of others (these beliefs reflect

the received private signals); a finite set of agents is used; and no pay-off structure

nor rationality is assumed, agency instead captured by transition rules.

An advantage of IC over the model from [4] is that IC fully specifies the in-

tended scenario formally: all steps are defined for any string of private signals and

all higher-order reasoning is represented. IC is thus a completely formal model of

informational cascades.

The paper progresses as follows. In Sec. 1, elements from Dynamic Epistemic

Logic (DEL) are introduced, and two first steps of agent 1’s turn are modeled: the

initial state of uncertainty and update with a private signal. In Sec. 2, it is shown

how the agent may make a “modeler-independent” choice when DEL is augmented

with transition rules, used to define two agent types. In Sec. 3, it is shown how

agent 2 may extract information from the action of 1 by being informed of his

agent type. In Sec. 4, agent 2 finishes his turn, and it is shown that agent 3 is in

a cascade if she acts on aggregated beliefs. It is further shown that her action is

uninformative to agent 4, who is then also in a cascade. In Sec. 5, the introduced

elements are used to define a DEL machine, about which it is shown that it does not

terminate prematurely and for which necessary and sufficient conditions of cascades

are identified.

1 Epistemic States and Update Transitions

Fix a finite set of agentsA and a countable set of atoms Φ.

Epistemic Plausibility Models. A plausibility frame (PF) is a structure 〈S, {≤i}i∈A 〉
where S is a set of worlds with typical elements s, t, and ≤i is a well-preorder1 on S

for each agent i ∈ A . An epistemic plausibility model (EPM) is PF augmented with

a valuation ‖·‖ : Φ −→ 2S assigning to every atom in Φ a set of states from S. For

1 A binary, reflexive and transitive relation in which every non-empty subset has a non-
empty set of minimal elements. See [1] for more or [2] for a definition using weakly
connectedness.
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an EPM S= 〈S, {≤i}i∈A ,‖Φ‖〉, let D(S) = S, called the domain or state space of S. A

pointed EPM is a pair (S, s) with s ∈ D(S).

Given an EPM, the indistinguishability relation for agent i is the equivalence

relation obtained from the symmetric and transitive closure of ≤i , denoted ∼i . The

information cell of agent i at state s is

Ki[s] = {t : s ∼i t}

and the plausibility cell of agent i at state s is

Bi[s] = Min≤i
Ki[s] = {t ∈Ki[s] : t ≤i s′, for all s′ ∈Ki[s]}.

The plausibility cell Bi[s] contains the worlds the agent find most plausible from

the information cell Ki[s] and represent the “doxastic appearance” [1, p. 25] of s

to i.2 Notice that s ≤i t means that s is at least as plausible as t for i.

Language and Satisfaction. Where P ∈ Φ and i ∈A , let the well-formed formulas

of language LBK(Φ,A ) be given by the grammar

ϕ :=> |⊥ | P | ¬ϕ |ϕ ∧ψ | Biϕ | Kiϕ.

The satisfaction relation |= between pointed EPMs and LBK is defined mostly as

usual (see e.g. [5] for details), why only the cases for doxastic and epistemic for-

mulas are presented:

(S, s) |= Biϕ iff ∀s′ ∈Bi[s] : (S, s′) |= ϕ

(S, s) |= Kiϕ iff ∀s′ ∈Ki[s] : (S, s′) |= ϕ

Boolean connectives are defined as usual. For (S, s) |= ϕ, say that P is true or

satisfied at state s in model S. Parentheses and reference to S may be omitted

when clear from context. Entailment is given by ϕ |= ψ iff (S, s) |= ϕ implies

(S, s) |= ψ for all (S, s). Denote by


ϕ




S the set of states from D(S) that satisfy

ϕ, i.e.


ϕ




S = {t ∈ D(S) : (S, t) |= ϕ}.

Agents and Atoms. To construct a model of informational cascades, fix and enu-

merate a set of agents A = {1, 2, ..., n} with n ≥ 3. It will be assumed that agents

2 The definition of EPMs is based on [1]. The notation for information and plausibility cells
are adopted from [7].
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make their choice in accordance with enumeration, i.e. 1 chooses first, followed by

2, etc.

To denote which of the two options available options are in fact the correct one,

use the atom L (for ‘the restaurant on the left is the better one’) and it’s negation

¬L =: R (for ‘the restaurant on the right is the better one’).

To represent which of the two possible options was chosen by agent i, the atoms

αi L and αiR are used, read respectively ‘i chose the restaurant on the left’ and ‘i

chose the restaurant on the right’. These literals are post-factual action descriptions,

not the actions themselves. The executed actions are instead captured by action

models, as specified below. As i may not yet have made any choice, it is natural that

¬αi L∧¬αiR should be satisfiable, why αiR is not defined as shorthand for ¬αi L (nor

vice versa). As any agent may at most make one choice, impose the restriction that


αi L




S ∩


αiR




S = ; for all S. In the remaining, let the set of atomic propositions

be given by Φ= {L} ∪ {αi L,αiR}i∈A .

Turns and Initial Uncertainty. Preemptively, each agent’s turn will comprise four

steps/models: i) Si, the initial state of i’s turn, ii) Ii−1 invoking the interpretation

of agent i − 1’s executed action,3 iii) Pi, the private signal of i, forming her private

beliefs about L/R, and iv) either li or ri , the action i finally executes. After the

execution, the initial state of i+1 results. The initial state for agent 1 is depicted in

Fig. 1.

L R

s0 t0A

Fig. 1. The EPM S1 representing the initial uncertainty about the better restaurant. All

agents know it’s either, but does neither know nor believe which. Labels L and R indicate

truth of the atom, e.g. s0 ∈ (L)S1
. For all P ∈ {αi L,αiR}i∈A , ‖P‖ S1

= ; as no agent has

chosen.

Action Plausibility Models. An action plausibility model (APM) is a plausibility

frame 〈Σ, {�i}i∈A 〉 with Σ finite, augmented by a precondition map pre : Σ −→
LBK(A ,Φ) and a postcondition map post : Σ −→ LBK(A ,Φ) such that post(σ) =
ψ where ψ ∈ {>,⊥} or ψ =

∧n
1ϕn with ϕi ∈ {P,¬P : P ∈ Φ}.4 An APM is thus

a structure E = 〈Σ, {�i}i∈A , pre, post〉. A pointed APM is a pair (E,σ) with σ ∈
D(E) =Σ.

3 Which for obvious reasons is skipped for agent 1.
4 Again, this presentation follows [?], with the addition of postconditions as formulated in
[14,6].
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Just as every world in an EPM represents a possible state of affairs, specified

by the world’s true propositions, so every action in an APM represents a possible

change. What change is specified by the pre- and postconditions; preconditions de-

termine what is required for the given action to take place, i.e. what conditions a

world must satisfy for an action to executable in that world, and postconditions

what ontic change the action brings about.5 The effect of an APM on a given EPM

is found by taking the action-priority update product, specified below.
The event where 1 receives (correct) private signal L is captured by the APM in

Fig. 2 with i := 1, setting the actual state to σ1; the (incorrect) private signal that
R is captured by setting the actual state to σ2.6

⟨L ;⊤⟩ ⟨R ;⊤⟩σ1 τ1

i

⟨L ;⊤⟩ ⟨R ;⊤⟩
σ2 τ2

i

A\{i}

Fig. 2. APM Pi: i receives private signal while oth-

ers remain uninformed about which. State labels

〈ϕ;ψ〉 specify pre- and postconditions. Transitive

and reflexive arrows are not drawn.

Expl.: Agent i := 1 in fact receives signal/soft information that L and is certain about this.

All others find it equally plausible that 1 is informed of L or R and that 1 is certain about

which. No ontic change occurs.

Fig. 2 does not display the full relations for all agents. Most notably, reflexive

loops and and links obtained by transitive closure are omitted. A rule-bound method

for depiction is not implemented, instead ‘easy-to-read’ figures are sought produced.

Doxastic Programs. P1 includes uncertainty for all agents, but this may be re-

stricted by looking at doxastic programs over the model. A doxastic program is the

action model equivalent of a proposition, i.e. a subset of all actions in the models’

event space: Γ ⊆ Σ. Singleton programs are denoted by the state name, and the

full state space program by the model name. Over P1, the program Γ1 = {σ1,τ1}
captures the event where 1 publicly receives signal that L, while the program P1

(the full state space) captures the event where the signal is received privately. In

5 To exemplify, the action ‘agent a plays a Queen’ is only executable when a has a Queen on
hand (precondition), and brings the factual change that the given Queen has now been
played (postcondition). An ontic change is non-doxastic change, here a change in atomic
truth value.

6 Specifying private signals thusly breaks with an aspect of the model presented in [4],
as they assume common knowledge among agents that the signal received is positively
correlated with the truth. To save space, this aspect is ignored, though it may be modeled
using extra atoms {Si L, SiR}i∈A for private signals and making 〈L; Si L〉 more plausible
than 〈L; SiR〉, etc.
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the ensuing, it will be assumed that doxastic programs have a designated state. To

incorporate new information from a doxastic program into S1, the action-priority

update product is taken.

Action-Priority Update Product. The action-priority update is a binary operation

⊗ with first argument an EPM S and second argument a doxastic program Γ ⊆ Σ
with designated state σ0, over some APM E with action space Σ. The APU product

is an EPM S ⊗ Γ = (S ⊗ Γ ,≤ ↑i ,‖Φ‖↑ , (s0,σ0)) where the updated state space is

S ⊗ Γ = {(s,σ) ∈ S × Γ : S, s |= pre(σ)}; each updated pre-order ≤ ↑i is given

by (s,σ) ≤ ↑i (t,τ) iff either σ ≺i τ and s ∼i t, or else σ ÷i τ and s ≤i t;7 the

valuation set ‖Φ‖↑ is given by the following: for every atom P ∈ Φ, PS⊗Γ = ({(s,σ) :

s ∈ PS}\{(s,σ) : post(σ) |= ¬P})∪ {(s,σ) : post(e) |= P} for states (s,σ) ∈ S ⊗Σ.

Finally, (s0,σ0) is the new actual world.8

The APU product gives priority to new information encoded in Γ over the old

beliefs from S by the ‘anti-lexicographic’ specification of ≤ ↑i that gives priority to

the APM plausibility relation �i . This is stands in contrast to the product update

often used in DEL settings (see e.g. [?,15,13,6]) where both relations are given

equal priority.9 The definition further clarifies the role of pre- and postconditions; if

a world does not satisfy the preconditions of an action, then the given state-action

pair does not survive the update, and if postconditions are specified, these override

earlier ontic facts, else leave all as was.

L R

(s0,σ1) (t0,τ1)

1

(s0,σ2) (t0,τ2)

1

A/{1}

Fig. 3. The EPM S1⊗P1 in which 1 has received

her private signal. In the actual state (s0,σ1), B1 L

is satisfied, along with K j(B1 L∨B1R), ¬K j B1 L and

¬K j B1R for j ∈A\{1}.

2 Informed Decisions

After having received her private signal, agent 1 stands to choose between the two

restaurants. Her choice is done publicly, post-factually represented by an atom, α1 L

7 �i is from E and ≤i from S. σ ≺i τ denotes (σ �i τ and not σ �i τ), σ ÷i τ denotes
(σ �i τ and σ �i τ).

8 The definition is based on [1] for the APU product with the valuation clause from [14,6].
9 Product update is often used in situations where both relations are assumed to be equiva-

lence relations with the updated equivalence relation ∼ ↑i given by (s,σ)∼ ↑i (t,τ) iff s ∼i t
and σ ÷i τ. See [1] for comments on the relationship between the two.

7



Aggregated Beliefs and Informational Cascades

or α1R. Ex post, the action should hence be known to all. A suitable APM for both

actions is depicted in Fig. 4.

⟨⊤;αiL⟩ ⟨⊤;αiR⟩
li ri

A A Fig. 4. The APM Ai over which the two possible

actions for agent i is given; either i may choose

to go left (li) or right (ri)

Over A1, the program l1 captures the public “announcement” that 1 is chose the left

restaurant, and vice versa for r1. Given her belief that L, for 1 to act reasonably, it is

clear that the next transition in the sequence should be an update with l1. However,

simply performing this update as modeler does not present 1 with much of a choice.

Put differently, if we as modelers have to inspect the model and hand pick a next

update for each agent action, the agents are not very autonomous: their decision

architecture is not incorporated in the sequence model, but only in the mind of the

modeler. Modeler independent models may also be obtained by using DEL protocols

(e.g. [13]) to specify next updates. Relations to the protocol approach are discussed

below.

One way incorporate the decision architecture of agents suitable for epistemic

logic is the knowledge-based programs of [9], being simple directions of the form

‘if K1 L, do α1 L’, specifying an action based on local epistemic state.10 Defining

such a rule for each relevant belief allows for the definition of various agent types

with choices specified for also counter-factual situations. These rules may then be

considered constituent parts of the sequence model, or system, specified below. To

not conflate two notions of programs, the term transition rules will be used to denote

the version here tailored to the DEL framework.

Transition Rules. A transition rule T from language L is an expression

ϕ  [X ]ψ

where ϕ,ψ ∈ L . Call ϕ the trigger andψ the effect. If EPM (S, s) satisfies the trigger

of a transition rule T , T is said to be active in (S, s) (else inactive).

Specified below, transition rules may be used to choose the next update based

on local conditions of the current EPM. E.g., updates by the ‘environment’ may be

10 Another possibility would be to introduce a game- or pay-off structure in parallel to the
DEL framework or embed the entire dynamics modeled in a temporally extended game
tree, whereby actions could be made ‘rationally’, based on utility maximization at end
nodes. A drawback to this method is the large models required: every branch must be
fully specified before decisions may follow. Using knowledge-based programs, a “localized”
modeling procedure may be followed instead.
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specified using atoms in the trigger: let r and w be atoms with resp. readings ‘it

rains’ and ‘the street is wet’. Then the transition rule T = r   [X ]w reads ‘if it

rains, then the next update must be such that after it, the street is wet’.

Transition rules may also be used as agent decision rules invoking e.g. ontic

change, by using Biϕ/Kiϕ-formulas as triggers and suitable formulas as effects.

E.g., the set of transition rules {Bi r   [X ]ui , Bi¬r   [X ]¬ui} may be used to spec-

ify agent behavior relative to rain: if i believes it rains, then next i will have an

umbrella, and if i believes it does not rain, then next i will not have an umbrella.

Using transition rules, two relevant agent types may now be defined, see Table

1. The individual agent acts on private beliefs about L and R, whereas the aggregator

acts on aggregated beliefs over group G, to be defined. For now, let 1 be individual.

Individual: Aggregator:

IL = Bi L  [X ]αi L AL = Ai|G L  [X ]αi L

IR = BiR  [X ]αiR AR = Ai|GR  [X ]αiR

Table 1. Decision rules specifying two agent types: the individual, who acts on private

beliefs only, and the aggregator, who bases decisions on aggregated beliefs (defined below).

A similar notion of agent types was introduced in the recent work [11] where

agent types are included in the formal language. The primary difference between

the two is that the agent types of [11] are defined by providing necessary condi-

tions for action. In contrast, the present approach lists sufficient conditions. In the

notation of [11], ϕ�x !ϕ specify that x is of the ‘truth teller’ type; if x announces

ϕ, then ϕ must be the case before the announcement. Contrary, the rule ϕ  [X ]ϕ
expresses that if ϕ is true, then ϕ must continue to be true after the next update.

Dynamic Modalities. Note that transition rules are not doxastic propositions: the

“modality” [X ] has no interpretation, and construed as a formula, transition rules

have no truth conditions. Instead, transition rules are prescriptions for choosing the

next action model. The choice of model is made by implementing a transition rule

over an EPM S and a specified set of doxastic programs over one or more APMs

using dynamic modalities.

For any program Γ over APM E, let [Γ ] be a dynamic modality. Semantics for

[Γ ]ϕ are given by

S, s |= [Γ ]ϕ iff ∀σ, if (s,σ) ∈ S ⊗ Γ , then E, (s,σ) |= ϕ.
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That is, a state s from S is a [Γ ]ϕ-state iff every resolution of Γ over s is a ϕ-world

in S⊗ Γ .

Solutions and Next APM Choice. A set of transition rules dictates the choice for the

next APM by finding the transition rule(s)’s solution. A solution to T = ϕ   [X ]ψ
over pointed EPM (S, s) is a doxastic program Γ such that

S, s |= ϕ→ [Γ ]ψ.

Γ is a solution to the set T = {T1, ...,Tn} with Tk = ϕk   [X ]ψk over (S, s) if

S, s |=
∧n

1(ϕk → [Γk]ψk), i.e. if Γ is a solution to all Ti over (S, s) simultaneously.11

Finally, a set of doxastic programs S is a solution to T over S iff for every t of S,

there is a Γ ∈ S such that Γ is a solution to T over (S, t).

If S is a solution to T over S, then given a state s from S, the transition rules in

T specify one (or more) programs from S as the next choice: the set of solutions to

T from S over (S, s). A deterministic choice will be made if S is selected suitably, i.e.

if it contains a unique Γ for each s. In the ensuing, solution spaces will be chosen

thusly.

Rule-Based Choice. Given that 1 is of the individual type, let us now see how

transition rules facilitate choice. Three things are required; the current EPM, S1⊗P1;

a set of transition rules, I = {IL ,IR}, and a solution space, S1 = {l1, r1}. Is S1 a

solution to I over S1? If so, then model, transition rules and solution space ‘fit’ as a

next APM choice will be specified for each state in S1 ⊗ P1 where a transition rule

is active, so also for the actual state in S1 ⊗ P1, denote it s0, hereby providing the

actual choice. Of course it is. All cases are analogous, so focus on the actual state. To

see that S1 is a solution to I over (S1, s0), note that s0 |= B1 L. Hence both l1 and r1

(trivially) solve IR over (S1, s0), as the rule is inactive (unsatisfied trigger and thus

antecedent). As IL is active, a solution Γ must satisfy s0 |= [Γ ]α1 L. Of l1 and r1,

clearly only l1 does so, why it is the next APM choice, see Fig. 5. So, as the modeler

would have it, 1 chooses to go to the left restaurant. Note, though, that had 1 been

given a different private signal (that R), then her beliefs would have changed, and

so would her choice without further tampering by the modeler.

11 Note the analogy with numerical equations; for both 2+ x = 5 and {2+ x = 5, 4+ x = 7},
x = 3 is the (unique) solution.
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L R

(s0,σ1,l1) (s0,τ1,l1)

1

α1L

α1L (s0,σ2,l1) (s0,τ2,l1)

1

A/{1}

Fig. 5. The EPM S2 := (S1⊗P1) ⊗ l1, shar-

ing the frame and valuation set of S1 ⊗ P1,

only with α1 L now satisfied at all states.

Hence S2 |=
∧

i∈A Kiα1 L while still S2 |=
∧

i∈A ¬Ki B1 L.

3 Reconstructing Reasons: Action Interpretation

Being seated, 1 may now move on to choose from the menu, for which she is left on

her own. In turn, agent 2 stands to choose restaurant, but before doing so, she will

both receive a private signal, but also try to extract information from the choice of 1.

For her to do so, she must interpret (or rationalize, or forward induce on) the action

performed by 1: why would she choose restaurant L? Disregarding reasons such as

forced hand or employee discount, an obvious candidate for an explanation is that

1 believes it is the better one. As no overarching structure allowing for e.g. forward

induction is present in the DEL framework, an approach utilizing an ‘inverse’ version

of decision rules, brute forcing conclusions about belief from observations about

action, is suggested.

Interpretation Rules. By an interpretation rule is simply meant a doxastic proposi-

tion ϕ→ Biψ. The underlying idea is that on the basis of an action (e.g. ϕ := αi L),

agents may deduce something about the content of i’s beliefs (e.g. that Bi L).12

A set of interpretation rules may in general be implemented using an APM where

the preconditions of each state is a conjunction of interpretation rules with differ-

ent bases with a conjunct for each action to be interpreted. Hereby each state rep-

resents a different hypothesis regarding the acting agent’s type, i.e. how the agent

made decisions. The plausibility order then specifies the ‘abductive hierarchy’ of

such hypotheses.

In the present, agents are given only one hypothesis about types, the hypothesis

also correct in the sense that the interpretation rules are (close to) the converse of

the in fact applied transition rules. Hence the interpretation rule APM Ii that deter-

mines howA interprets the actions of i is a one state model. Set the preconditions

for this state, ii , to

12 More detailed interpretation rules are used in [12] which also respect the temporal aspect
introduced by updated, whereby the earlier beliefs of the actor are concluded. This aspect
is ignored in the present to simplify. This causes no formal problem, as the beliefs of agents
who have already acted will stay fixed.
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pre(ii) := αi L → Bi L ∧
αiR→ BiR

Updating S2 with I1 produces the model depicted in Fig. 6. The two lower states

from S2 are deleted as they do not satisfy the consequent of the first conjunct of the

preconditions. The second conjunct plays no role here, but would have, had things

been different.

L R

α1L s0 t0

1

A/{1}

Fig. 6. The EPM S2⊗I1: A has interpreted the

action of 1 correctly, and now now her belief that

L.

Hereon out, used state names will not reflect construction; the vector notation grow too

long.

Why Include Interpretation? A criticism has been raised pertaining to the necessity

of including interpretation rules, arguing that it is overly complex as the informa-

tion obtained could have been included in a simpler way by using Bi L and BiR as

preconditions for the actions li and ri of Ai, resp. Indeed, the result would be the

same, and the dynamics one step shorter.

However, physical action, as in restaurant choice, is not an announcement of

belief; the action and the rationalization are separate, why they may be modeled

as separate steps.13 Though nothing in the ensuing hinges on using a distinct inter-

pretation model, the separation provides a more fine grained view of the temporal

structure of the dynamics in play, broken into ‘smallest pieces’.14 Furthermore, as an

argument for the approach in general, using a distinct interpretation model provides

an easily modifiable module for specifying perception and higher-order perception

of agent types.

4 Aggregated Beliefs and Cascading

Reusing the APM in Fig. 2 with i := 2 and actual state again σ1, the model, call it

P2, captures that 2 is privately informed that L, see Fig. 7. If it is assumed that also

2 is of the individual type and has the same possible moves available as 1 (Fig. 4,

13 This even goes if the physical action is an announcement: in speech act theory at least, the
performative ‘I choose L’ and the contingent perlocutionary consequence that the speaker’s
beliefs become known are distinct.

14 Ideas for further deconstruction of any steps in the dynamics suggested are very welcome.

12
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i := 2), then given his belief that L in s0 of (S2⊗I1)⊗ P2, the next APM choice will

be l2, changing (S2⊗I1)⊗ P2 only by setting α2 L true everywhere.

L R

s0 t0

1,2

s1 t1

2

1A\{2}
A\{1,2}

A\{2}

A\{1,2}

L R

s0 t0

1,2

A\{i}

Fig. 7. The EPMs (S2⊗I1) ⊗ P2 and

((S2⊗I1)⊗ P2)⊗ l2: Identical, though the

latter with α2 L true at all states. Still only

2 knows her beliefs.

Fig. 8. The EPM S3 ⊗ I2: Following inter-

pretation, everyone knows 2’s beliefs: the

states s1 and t1 in Fig. 7 does not satisfy

α2 L→ B2 L, so they did not survive.

Aggregated Beliefs. In the initial state for agent 3’s turn, S3 := ((S2⊗I1)⊗ P2)⊗
l2, the action of agent 2 may now be interpreted analogous to that of agent 1 by

suitably indexing the one-state interpretation APM above, obtaining I2. The result,

see Fig. 8, has the important feature from previously: all agents now know that 2

believes that L.

Assuming that 3 is individualistic with the same choices and is given a private

signal that L, it should be clear that 3, too, will choose the left restaurant, and

ceteris paribus with private signal that R (Fig. 2, i := 3 and actual state σ2), that

she would choose the right.

However, 3 has more information than her own private signal available. As she

as correctly interpreted the actions of 1 and 2, she knows what beliefs their private

signals caused. As neither has changed their beliefs since receiving their signals,

and there is a one-to-one correspondence between believing L or R and the two

private signals, 3 may accumulate information from all three signals by aggregating

the beliefs of all three agents regarding L/R. Call an agent that acts in this manner

an aggregator: one who bases decision on both her private information as well as

information extracted by witnessing the actions of others.

To capture the required aggregated beliefs introduce a new operator Ai|G , repre-

senting the beliefs of agent i when aggregating information from her beliefs about

the beliefs of agents from group G. The semantics for Ai|G is defined using simple

majority ‘voting’ with a self-bias tie-breaking rule. To simplify, let Ai|Gϕ be well-

formed only for atomic ϕ. For p ∈ Φ,

S, s |= Ai|G p iff α+ |{ j ∈ G : S, s |= BiB j p}|> β + |{ j ∈ G : S, s |= BiB j¬p}|

13
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with tie-breaking parameters α,β given by

α=







½ if s ∈ (Biϕ)S

0 else

β =







½ if s ∈ (Bi¬ϕ)S
0 else

This definition leaves agent i’s aggregated beliefs undetermined iff both i is agnostic

whether p and there is no strict majority on the matter.

It was postulated that aggregated beliefs and Bayesian conditionalization are

“equivalent” for the analysis of informational cascades. The case for this is that given

the specific setup presented, it may be shown that Bayesian agents may “decide ac-

cording to a majority-vote over the signals they receive [i.e. are able to deduce]” [8,

p. 439]. Majority voting is sensible since every agents private information regard-

ing L/R is equally good, and under the assumption that every agents information

is correct with a probability above .5. Then using Ai|G L/R to make a decision about

which action to take is justified by Condorcet’s jury theorem.

Being in Cascade. To make 3 act on aggregated beliefs, let 3 be an aggregator, as

defined in Table 1, i.e. AL = Ai|A L   [X ]αi L and AR = Ai|AR   [X ]αiR, with

the same possible moves as 1 and 2 (Fig. 4, i := 3). Acting thusly puts agent 3 in

cascade: no matter what her private information, she will act as those before her.

To see this, observe the EPM in Fig. 9, the product of S3⊗I2 and the private

signal model for 3, P3. For now, set S := (S3⊗I2) ⊗ P3. Note first that given the

private signal that L (P3 with actual state σ1), s0 would be actual, where for private

signal that R (P3 with actual state σ2), the actual state would be s1.

Next, see that both satisfy A3|A L: at s0, α + |{ j : s ∈ (B3B j L)S}| = 3½ as all

three agents are believed to believe L, while β + |{ j : s ∈ (B3B jR)S}| = 0. Hence

s0 ∈


A3|G L




S. At s1, α+ |{ j : s ∈ (B3B j L)S}| = 2 as agents 1 and 2 are believed

to believe L, while β + |{ j : s ∈ (B3B jR)S}| = 1½ as 3 herself believes R. Hence

also s1 ∈


A3|G L




S. Given this, it is clear that for both pointed EPMs, the next APM

choice will be l3 as this is the only solution from S3 toAL . So, no matter her private

signal, 3 chooses l3.

14
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L R

s0 t0

1,2,3

s1 t1

3

1,2A\{3}
A\{1,2,3}

A\{3}

A\{1,2,3}

Fig. 9. The EPM (S3⊗I2) ⊗ P3 without specified

actual state. If 3 is given private signal that L

(P3,σ1), the actual state is s0; for signal that R

(P3,σ2), the actual is s1.

Note that though 3 is in cascade if she aggregates, this does not hold for nei-

ther 1 or 2; had either been assumed aggegators, nothing in the dynamics would

have changed: both would still have acted in accordance with their private signals,

as their aggregated beliefs are in accordance with their private ones. The only rea-

son they where not assumed to be aggregators was to postpone the definition of

aggregated beliefs.

Still Being in Cascade. Before moving on to the general model for informational

cascades, two observation about agent 4 are due. First, that 4’s aggregated beliefs

will not be affected by the choice of 3, and second, that 4 will also be in cascade.

Preliminarily, notice that in either of the two possible initial states for 4, S4 :=
((S3⊗ I2)⊗ (P3, x))⊗ l3 (Fig. 9, α3 L true everywhere, x ∈ {σ1,σ2}), the interpreta-

tion rules used so far will no longer be correct, as they reflect individualistic agents.

Hence, the one-state interpretation model for 3’s action should be Ii with i := 3 and

precondition

pre(ii) := αi L → Ai|A L ∧
αiR→ Ai|AR.

This interpretation model type could have been used throughout without altering

the obtained due to the equivalence of 1 and 2’s private and aggregated beliefs.

Using a correct interpretation rule captures that 4 (and subsequent agents) all

know what type of agent 3 is. Interestingly, this knowledge implies that 4 will not

learn anything about 3’s private beliefs from her action. This follows as all states of

S4 satisfy α3 L→ A3|A L, precisely because 3 is in cascade. Hence S4 ⊗ I3 = S4.

Note that this is because 3 is in a cascade, not because she is an aggregator; had

1 and 2 been aggregators and interpreted using the new Ii, their beliefs would still

become known.

Updating S4 with unpointed P4 produces an 8 state model, see Fig. 10, as no

states are deleted by the interpretation. Note, first, that at neither possible actual

state ((s1,σ1) for private signal that L, (s1,σ2) for R) satisfies neither B4B3 L nor

B4B3R. Hence 3 will not be counted as ‘casting a vote’ when determining 4’s aggre-

gated beliefs. Second, 4 knows that both 1 and 2 believe L, why, cf. the argument

for 3 above, 4 will also be in cascade.
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L R L R

(s0,σ1) (t0,τ1)

1,2,3,4

(s0,σ2) (t0,τ2)

1,2,3

4

(s1,σ1) (t1,τ1)

3

1,2,4
(s1,σ2) (t1,τ2)

1,2

3,4

A\{3}

A\{1−4}

A\{3}

A\{1−4}

A\{3}

A\{1−4}

A\{3}

A\{1−4}

A\{3}

A\{3}

Fig. 10. The EPM S3⊗P4 without specified actual state.

5 DEL Machines and a Model of Informational Cascades

The dynamics build step-by-step may be jointly represented by a DEL machine. The

specified machine provides a collected ‘package’ embodying a model of informa-

tional cascades. Hereby a formal construct is defined about which propositions may

be proven.

DEL Machine. A DEL machine is a tuple M = 〈(S0, s0),R,S, end〉 where the initial

state (S0, s0) is a pEPM, end ∈ L is the end condition, and R and S are (partial)

functions

R : N−→P (R) and

S : N−→P (E )

with R the set of transition rules over L and E the set of pointed APMs over L ,

assigning to n a rule set Rn and a solution set Sn. Where R and S are partial, it is

assumed that they are defined for the same initial segment of N.

For machineM, denote the solutions to Rn from Sn over the EPM(s) at step n by

nex t(M, (S, s))n = {(E,σ) ∈ Sn : (E,σ) is a solution to all T ∈ Rn over (S, s)}.

Generating Trees. A DEL machine is run by step-wise generating a tree of pointed

EPMs. Given machine M = 〈(S0, s0),R,S, end〉, define the tree generated by M,

t ree(M), by the following. Let the root of t ree(M) beM0 = {(S0, s0)}. Let nodes at

level n+ 1 be

Mn+1 = {(S, s)⊗ (E,σ) : (S, s) ∈Mn and (E,σ) ∈ nex t(M, (S, s))n}.
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Branches are defined in a straight-forward manner: (S′, s′) ∈ Mn+1 is an (E,σ)-
successor of (S, s) ∈Mn iff (E,σ) ∈ nex t(M, (S, s))n and (S′, s′) = (S, s)⊗ (E,σ).

Any pointed EPM belonging to some level k such that (S, s) |= end is and ends it’s

branch and is called a leaf.

A properly defined DEL machines generates a tree which has a leaf at the end of

each branch. It is however not hard to produce DEL machines which do not generate

proper trees, e.g. if nex t(M, (S, s))n is empty for some EPM that is not a leaf.

The Machine IC. Define the DEL machine IC= 〈S1,T,S, end〉 as follows.

Initial state. Let the initial state be S1 (from Fig. 1, on page 5):

L R

s0 t0A

End condition. Let the end condition be end := αm L ∨αmR with m= max(A ).

Rule and solution sets. Each agents turn consists of three steps. These are specified

for n as follows. Note that the initial step of agent n’s turn occurs at level 3(n− 1),
as the machine commences at level 0.

1. Interpret previous agent’s action.

R3(n−1) = {In−1 =>  [x]>}
S3(n−1) = {I•n−1}, the singleton APM with

pre(in−1) := αn−1 L→ An−1|A L ∧
αn−1R→ An−1|AR

post(in−1) := >.

Special case: for I0, set pre(i0) = post(i0) =>.

2. Receive private signal.

R3(n−1)+1 = {Pn =>  [x]>}
S3(n−1)+1 = {(Pn, xn)} where Pn is

⟨L ;⊤⟩ ⟨R ;⊤⟩σL τL

n

⟨L ;⊤⟩ ⟨R ;⊤⟩
σR τR

n

A\{n}

17



Aggregated Beliefs and Informational Cascades

with xn determined by private signal vector P= (x1, x2, ..., xm), xk ∈ {σL ,σR}.

3. Make choice based on aggregated beliefs.

R3(n−1)+2 = {AL ,AR} :

Aggregator:

AL = Ai|G L  [X ]αi L

AR = Ai|GR  [X ]αiR

S3(n−1)+2 = {ln, rn} :

⟨⊤;αnL⟩ ⟨⊤;αnR⟩
ln rn

A A

The initial state and the end condition are self-explanatory. For the rule and

solution sets, then the first two clauses ensure that interpretation models and and

private signals are invoked by the ‘environment’ at the correct times. Further, which

private signals are supplied are controlled by a vector. This vector is the interesting

parameter to tweak, as it to a high degree (see Theroem 1) determines the behavior

of the machine. The third clause makes agents act in a context sensitive manner, as

specified by their aggregated beliefs.

Note that IC evolves the same irrespectively of which of the two states from

S1 is given as actual. Let Pi be the private signals for agents j < i, i.e. the initial

segment of P of length i− 1.

Given the defined machine IC, it may be shown that it generates proper trees,

i.e. that all branches are terminated by a pointed EPM that satisfies the end con-

dition. To simply notation, note that IC is deterministic, in the sense that for every

level n, the set of nodes in the generated tree, ICn, is a singleton. Misuse notation

and refer by ICn to it’s element.

Proposition 1. The machine IC runs until end := αm L∨αmR is satisfied at IC3(m−1)+3,

irrespectively of which initial state or which signal vector P is used for input.

Proof. By induction it is shown that for every i ≤ m, the machine will produce state

Si+1 satisfying αi L ∨αiR. See the Appendix for details. THE REMAINDER OF THE

PAPER USES THE NOTATION AND SETUP FOUND N THE CONFERENCE PRO-

CEEDINGS. I APOLOGIZE IF ANYONE ACTUALLY DOWNLOADS THIS BEFORE I

GET THE REST UP TO DATE.
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‘In cascade’ Definition and Characterization. With IC defined, it is possible to

precisely define the notion of being in a cascade: agent i is in a cascade iff

i) nex t((Si ⊗ Ii−1))⊗ (Pi, x)) = li for both x ∈ {σ1,σ2}, or

ii) nex t((Si ⊗ Ii−1))⊗ (Pi, x)) = ri for both x ∈ {σ1,σ2}.
The definition captures that i acts in accordance with an established majority, irre-

spective of her own signal.15

To state the following propositions, it is handy to have notation for the agents in

cascade who ignored which signals. Let CLi = { j < i : j is in cascade and x j = L j}
and CRi = { j < i : j is in cascade and x j = R j}. We may then state and prove the

following.

Lemma 1. Sn+1 ⊗ In |= Bn+1Bn L ∨ Bn+1BnR iff n is not in a cascade.

Lemma 1 captures a crucial property regarding the higher-order reasoning occur-

ring in cascades, namely that the choices of agents in a cascade provide no information

about their private beliefs, i.e. private signals. The proof of the lemma and the sub-

sequent may be found in the appendix.

Proposition 2. If two more agents have received private signal of one type than have

received signals of the other type, not counting signals of agents in a cascade, then agent

i is in cascade. Precisely: if |{ j ∈A : L j ∈ Pi}|−|CLi | ≥ (|{ j ∈A : R j ∈ Pi}|−|CRi |)+2

then i is in cascade of type i), and if (|{ j ∈A : L j ∈ Pi}|− |CLi |)+2≤ |{ j ∈A : R j ∈
Pi}| − |CRi |, then agent i is in cascade of type ii).

The proof rests on a counting argument. The proposition provides sufficient condi-

tions for an agent to be in a cascade. Due to the “equivalence” of the Bayesian and

aggregated beliefs approaches, these conditions are identical to those from [4], see

p. 1005-06.

Corollary 1. Cascades in IC are irreversible: if i is in a cascade of type i) resp. type

ii), then for all k > i, k will be in a cascade of type i) resp. type ii).

The corollary captures the quintessential effect of cascades, namely that they prop-

agate through the remaining group.

Prop. 2 provides sufficient conditions for cascades to arise in IC . The following

shows that these are also necessary.

Proposition 3. If i is in cascade, then two more agents have received private signal

of one type than have received signals of the other type, not counting signals of agents

15 The definition thus closely mirrors that from the original paper: “An informational cascade
occurs if an individual’s action does not depend on his private signal.” [4, p. 1000]
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in a cascade. Precisely: if i is in cascade of type i), then |{ j ∈ A : L j ∈ Pi}| − |CLi | ≥
(|{ j ∈A : R j ∈ Pi}|− |CRi |)+ 2, and if i is in cascade of type ii), then (|{ j ∈A : L j ∈
Pi}| − |CLi |) + 2≤ |{ j ∈A : R j ∈ Pi}| − |CRi |.

6 Venues for Further Research

Several important aspects of informational cascades have not been discussed in this

paper. First, that cascades might be fragile, an important focus in [4]: small changes

in private signals may be sufficient to overturn even long-lived cascades. This may

be investigated using variants of the system IC , e.g. by providing agents in a cas-

cade with hard information of the true state. It is conjectured that making only this

change will not affect a cascade, as such a signal will not change the perceived be-

liefs of others. As aggregators accumulate this information, their private knowledge

will not affect their decision. Hence, for cascades to be broken, a more detailed

agent type is required who will act on private knowledge if available.

Second, aggregated belief has been defined using a self-biased tie-breaking rule,

which was made “common knowledge” by the associated interpretation rule. In [4],
a tie-breaking rule involving random choice is also used. Such a rule allows for the

extraction of less information from the choices of others, and as noted in [10], the

epistemic assumptions regarding it are non-trivial. How such a rule is to be modeled

and how it affects cascades is an open question.

Finally, only a finite set of agents has been considered. Allowing an infinite set

will require suitable alterations to the specified setup (e.g. EPMs must be allowed to

have infinitely many states, as the state space may grow infinite due to uncertainty

in cascades). From the proof of Prop. 1, it is conjectured that the infinite case of

IC will never terminate. However, Prop. 2 and 3 may in this case be used to show

limit results about the probability of cascades arising, and of these being correct.

This requires specifying probabilities for the correctness of private signals, an aspect

here ignored. It is conjectured that such results will mirror those of [4].
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Appendix: Proofs

Proposition 1. The system IC runs until end := αm L ∨ αmR is satisfied at Sm+1,

irrespectively of which initial state or which signal vector P is used for input.

Proof. By induction it is shown that for every i ≤ m, the machine will produce state

Si+1 satisfying αi L ∨αiR.
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Base case: Irrespective of the actual state chosen for S1, T(S1) = {I0 = >  
[X ]>} with special case S(I0) = {I0}, I0 clearly being the unique solution to I0 for

both initial states, why via next APM choice the system progresses to S1 ⊗ I0.

With T(S1 ⊗ I0) = {P1 = >  [X ]>}, the signal vector P is consulted, specify-

ing either solution space {(P1,σ1)} or {(P1,σ2)}, either clearly providing a unique

solution to P1, and by next APM choice the system progresses to (S1⊗I0)⊗(P1,σ1)
or (S1 ⊗ I0)⊗ (P1,σ2), satisfying resp. A1|A L and Ai|AR (agent 1 is the only agent

with a belief that L or that R, cf. Fig. 3 on page 7).

Whether the system progresses to one or the other, the argument is analogous,

so assume the next state is (S1⊗ I0)⊗ (P1,σ1) for which T(((S1⊗ I0))⊗ (P1,σ1)) =
{AL ,AR} with S({AL ,AR}) = {l1, r1}. Of these two programs, only l1 is a solution

to {AL ,AR} over the given EPM, cf. the argument on page 10. Hence the system

progresses to (((S1 ⊗ I0))⊗ (P1,σ1))⊗ l1 =: S1, satisfying α1 L so also α1 L ∨ α1R,

which concludes the base case.

Inductive step: Assume the system has reached state Sn, n< m, satisfying αn−1 L∨
αn−1R. It is shown the system then progresses to Sn+1, satisfying αn+1 L ∨ αn+1R.

For Sn, T(Sn) = {In−1 = >   [X ]>} with S({In−1}) = {In−1}, In−1 clearly being

the unique solution to In−1. Hence the system progresses by next APM choice to

Sn ⊗ In−1.

With T(Sn⊗In−1) = {Pn =>  [X ]>}, the signal vector P is consulted, specify-

ing either solution space {(Pn,σ1)} or {(Pn,σ2)}, either clearly providing a unique

solution to Pn, and by next APM choice the system progresses to (Sn ⊗ In−1) ⊗
(Pn,σ1) or (Sn⊗In−1)⊗(Pn,σ2). Both states will satisfy An|A L or An|AR, depending

not only on the private signal just invoked, but also on whether the agent is in a

cascade or not. However, given the definition of Ai|A , it is clear that an for EPM

satisfy ¬(Ai|A L ∨ Ai|AR), it must also satisfy ¬(Bi L ∨ BiR) as the aggregated belief

will otherwise be determined either by majority or tie-breaking. But given the last

update with (Pn,σ1) or (Pn,σ2), agent n will privately believe L or R, why either

An|A L or An|AR will be satisfied.

This in turn guarantees that one of the transition rules from T(((Sn ⊗ In−1))⊗
(Pn, x)) = {AL ,AR} will be active. As S({AL ,AR}) = {ln, rn} clearly provides a

unique solution to {AL ,AR} over both EPMs in question, the system will progress to

either of four states (two options for each signal, as the agent may be in a cascade):

((Sn⊗In−1)⊗(Pn,σ1))⊗ln or ((Sn⊗In−1)⊗(Pn,σ1))⊗rn or ((Sn⊗In−1)⊗(Pn,σ2))⊗rn

or ((Sn⊗ In−1)⊗ (Pn,σ2))⊗ rn. By the postconditions of ln and rn, each will satisfy
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αn L ∨αnR. Given that Sn+1 := (((Sn⊗ In−1))⊗Pn)⊗ nex t(((Sn⊗ In−1))⊗Pn), Sn+1

satisfies αn L ∨αnR, which concludes the inductive step.

Lemma 1. Sn+1 ⊗ In |= Bn+1Bn L ∨ Bn+1BnR iff n is not in a cascade.

Proof. No matter the actual state of Pn (x ∈ {σ1,σ2}) , no matter what action (y ∈
{ln, rn}), the model ((Sn ⊗ In−1)⊗ (Pn, x))⊗ y will contain two parts disconnected

for n; one in which Bn L and one where BnR. These are connected for all A\{n}.
The only way to obtain either Bn+1Bn L or Bn+1BnR from this via In is if one of these

parts are deleted. A state will be deleted by/not survive update with In iff it does not

satisfy pre(in) = αn L→ An|A L ∧αnR→ An|AR. Hence we must show that an agent

is in a cascade iff all states of models ((Sn ⊗ In−1)⊗ (Pn, x))⊗ y satisfy pre(in).
Take the case of ln (rn is symmetrical), and regard the unpointed model ((Sn ⊗ In−1)⊗

Pn) ⊗ ln. Then showing satisfaction of pre(in) reduces to showing satisfaction of

An|A L: In all states αn L is satisfied, so 1) αnR → An|AR is trivially satisfied, and

2) in all states αn L→ An|A L iff An|A L in all states.

Both ways: Assume, matching the ln case, that n is in a cascade of type i), i.e.

that nex t((Sn ⊗ In−1))⊗ (Pn, x)) = ln for both x ∈ {σ1,σ2}. Given the aggregator

decision rules, this clearly occurs iff An|A L is satisfied in the two possible actual

states of (Sn⊗ In−1))⊗ (Pn, x). This happens iff An|A L is satisfied in all this model’s

states, again iff An|A L is satisfied in all states of ((Sn ⊗ In−1))⊗ (Pn, x))⊗ ln (as ln

does not change this).

Proposition 2. If two more agents have received private signal of one type than have

received signals of the other type, not counting signals of agents in a cascade, then agent

i is in cascade. Precisely: if |{ j ∈A : L j ∈ Pi}|−|CLi | ≥ (|{ j ∈A : R j ∈ Pi}|−|CRi |)+2

then i is in cascade of type i), and if (|{ j ∈A : L j ∈ Pi}|− |CLi |)+2≤ |{ j ∈A : R j ∈
Pi}| − |CRi |, then agent i is in cascade of type ii).

Proof. Shown for the type i) case only, as the other is symmetrical. Assume that

|{ j ∈ A : L j ∈ Pi}| − |CLi | ≥ (|{ j ∈ A : R j ∈ Pi}| − |CRi |) + 2. It follows that

at Si, |{ j ∈ A : L j ∈ Pi}| − |CLi | will have acted according to their private signal

that L without being in a cascade, and |{ j ∈ A : R j ∈ Pi}| − |CRi | have done the

same for signal R. Hence, following interpretation, |{ j : Si ⊗ Ii−1 |= BiB j L}| ≥ |{ j :

Si ⊗ Ii−1 |= BiB jR}|+ 2, as the private beliefs of non-cascading agents are revealed

by the interpretation model (Lemma 1).

To abbreviate, let LSI = { j : Si ⊗ Ii−1 |= BiB j L} and LSI P = { j : (Si ⊗ Ii−1) ⊗
(Pi, x) |= BiB j L} with x ∈ {σ1,σ2} specified by context, and let RSI and RSI P be the

BiB jR-counterparts.
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If i receives private signal that L by (Pi,σ1), then clearly |LSI P | > |LSI |, why

(Si ⊗ Ii−1)⊗ (Pi,σ1) |= Ai|A L. So the next APM choice will be li .

If i receives private signal that R by (Pi,σ2), then |LSI P | = |LSI | while |RSI P | =
|RSI |+ 1. Hence |LSI P | ≥ |RSI P |+ 1. As the tie-breaking parameters takes value at

most ½, we have that |LSI P |> |RSI P |+½, why (Si⊗ Ii−1)⊗ (Pi,σ2) |= Ai|A L. So the

next APM choice will be li . Conjoining the two cases shows that i is in a cascade of

type i).

Proof of Proposition 3. If i is in cascade, then two more agents have received private

signal of one type than have received signals of the other type, not counting signals

of agents in a cascade. Precisely: if i is in cascade of type i), then |{ j ∈ A : L j ∈
Pi}| − |CLi | ≥ (|{ j ∈ A : R j ∈ Pi}| − |CRi |) + 2, and if i is in cascade of type ii), then

(|{ j ∈A : L j ∈ Pi}| − |CLi |) + 2≤ |{ j ∈A : R j ∈ Pi}| − |CRi |.

Proof. Shown for the type i) case only, as other is symmetrical. Assume i is in a

cascade of type i) so nex t((Si ⊗ Ii−1)) ⊗ (Pi, x)) = li for both x ∈ {σ1,σ2}. This

occurs iff (Si ⊗ Ii−1)) ⊗ (Pi, x) |= Ai|A L for both x ∈ {σ1,σ2} (if (Si ⊗ Ii−1)) ⊗
(Pi,σ2) |= Ai|AR, the next APM choice would be ri). From satisfied Ai|A L, it follows

that α+ |LSI P |> β + |RSI P |.16 For x = σ2, α= 0 and β =½, so |LSI P |> |RSI P |+½.

Further, as i adds 1 to |RSI P | due to private signal, |LSI |> |RSI |+1½. As only agents

not in a cascade add to |LSI | and |RSI |, each will have followed their private signals,

why |LSI | = |{ j ∈ A : L j ∈ Pi}| − |CLi | and |RSI | = |{ j ∈ A : R j ∈ Pi}| − |CRi |, and

the conclusion follows. The argument for x = σ1 is analogous.

16 See the proof of Prop. 2 for definitions of LSI P , RSI P , LSI and RSI .
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