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Abstract
In the present thesis, a theory of semantic competence is modeled using tools from
epistemic logic. The resulting formal model is used to analyze a problem from the
philosophy of language, namely Frege’s Dilemma.
There are two aims of the thesis: to construct a formal theory of semantic com-

petence, and to show that the formal theory can be used as an useful analytical tool
in uncovering the informational structure behind problems from the philosophy of
language.
The first aim is achieved by, first, deciding for which theory of meaning a theory

of semantic competence is wanted. Due to its simplicity, Millianism is chosen. Then
various non-formal theories of semantic competence are evaluated with respect to
finding one which allows for an objective, inter-subjective comparison of compe-
tence levels. It is argued that the conceptual theory of (Marconi, 1997) is the best
choice: the theory has a clearly defined structure making modeling possible, and is
based on empirical studies from cognitive neuropsychology. Following these initial
choices, the modeling framework and its philosophical interpretation is presented.
The framework used is epistemic logic, and both the propositional and quantified
versions are introduced. As a more expressible logical language is required, many-
sorted quantified epistemic logic is presented, and a novel, general completeness
result is shown for many-sorted extensions of quantified modal logic. Having thus
set the stage of achieving the first aim, a slightly simplified version of the theory
of (Marconi, 1997) is modeled. A suitable model-class is defined and a meaning
function is added to capture Millian meaning. Based on the shown completeness
result, a sound and complete axiom system is presented, and a logic representing the
formal theory is thereby found. The model is then validated. It is shown that both
the essential ontological properties as well as the competence types from Marconi’s
theory are present. It is further shown that the formal counterparts of the com-
petence types from Marconi’s theory adhere to the principles dictated by empirical
studies. Thereby, the first aim is achieved.
To accomplish the second aim, proof of concept is shown. This is done by analyz-

ing an objection to the correctness of the Millian theory of meaning, namely Frege’s
Dilemma (Frege, 1892). The formal theory is used to analyze both disjuncts of the
dilemma, while focusing on the epistemic situation of the agent, i.e. the agent’s
level of semantic competence. The formal theory of semantic competence allows
for multiple notions of semantic competence, each resulting in a unique rendering
of the dilemma. Based on these analyses, it it is concluded that once the underly-
ing informational structure of the discussed situations is revealed, neither disjunct
proves to be a problem for the Millian theory of meaning. Hereby, the second aim
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is accomplished.
However, I raise an intuitive objection to one of the analyses. It is argued that the

objection introduces an un-accounted for parameter, namely contexts. In order to
show that this objection is not fatal for the proposed analysis, a chapter is devoted
to the construction of a contextual theory of semantic competence. The notion of
contexts is incorporated into the models for semantic competence, and the possi-
bilities for finding a complete axiomatic system is discussed, but no completeness
result is shown. Therefore, a formal theory, i.e. a logic, for contextual semantic
competence is not presented. However, the model-theoretic machinery is used to
re-analyze the problematic case. It is shown that when the situation is modeled in
a contextual model, the epistemic analysis of the disjunct again showed the Puzzle
about Identity is unproblematic for the Millian view.
Overall, the constructed formal theory of semantic competence is shown to eluci-

date informational aspects of the problems posed to the philosophy of language by
Frege’s Dilemma. In particular, once the informational structure of the problems is
clear, it is shown that each argument is far from being as decisive against Millianism
as has been the mainstream view in 20th century philosophy of language.
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1 Introduction
Human understanding of natural language is a peculiar thing. In so many instances
of everyday life, sentences are heard, read and understood. Upon understanding
a phrase, information is received, knowledge is gained, and qualified decisions are
made regarding which bread to buy, where to look for the keys or how to prove a
complex theorem.
Even though understanding is typically taken for granted in social interaction, the

notion itself is not well-understood and under debate.1 In the present thesis, a formal
theory of understanding, or, to avoid everyday connotations, of semantic competence,
will be constructed. The guiding idea is that multiple levels of understanding are
possible, and depending on how well basic words are understood, varying degrees of
information is received when a statement is announced.
To give an example, imagine that we are at a social gathering, but we have run

out of social lubricant. Knowing that I still have more wine in my car, you offer to
fetch this, and I reply

“Yes, but the car is locked. My brother has the keys.”

This plain, English statement encodes three important elements relevant to our joint
desire that you get the wine. First, the request is granted. Second, an obstacle is
identified, and third, a plan is proposed: collect the keys from my brother, unlock
the car, and then bring the wine. Supposing these are all the relevant facts we need
to consider and that my brother is present, could I now reasonably expect to sit
and wait for you to return with the wine? On the one hand, yes: the statement
encodes all relevant information for the goal to be obtained. On the other hand, this
depends on whether or not you understood the statement. In particular, it depends
on whether you understood the statement well enough. You may have understood
the second part well enough for you to get the keys, and then the wine. Or, it may
be the case that you understood the second part in a purely conceptual way: you
may have understood it well enough to paraphrase it upon request, tell me that
the renewed plan should then be to ask my brother for the keys or crack some joke
about my family tree, but not well enough to act. How can this be? Well, it may
be because you do not understand the singular term ‘my brother’ in anything but a
conceptual way. More specifically, you may not know who the term refers to – and
if you do not know the meaning of the subject in the sentence, how should you be
able to follow up on the new plan?

1See e.g. (Wikforss, 2009)
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Chapter 1 Introduction

This is an example where lack of understanding results in an agent less informed
than it would have been given a stronger understanding of the terms of language.
Often, understanding a sentence is paraphrased as ‘grasping it’s meaning’, and the
example may be seen as illustrating different strengths of ‘grasping the meaning’
of the singular term ‘my brother’. Hence, to some degree, understanding hinges on
meaning, which again is not an uncontroversial notion.
In fact, in 20th century philosophy, natural language meaning has been one of

the main focus areas. One of the earliest contributions to the now vast literature on
the philosophy of language was Gottlöb Frege’s classic 1892 paper Über Sinn und
Bedeutung2. The paper spawned a large scale discussion regarding the meaning of
natural language terms, many issues of which are still unresolved. So far, no consen-
sus has been reached on solutions to problems posed in Frege’s paper, regarding the
meaning of singular terms. This is in spite of over a hundred years active discussion
among philosophers, working with a wide range of theories of meaning. Among the
possible candidates are some based on Millianism, the theory of meaning originally
criticized by Frege. These are called direct-reference theories. Other theories are
based on Frege’s original solution, and evoke an additional layer of meaning apart
from mere reference, often denoted sense or descriptionist theories of meaning, see
(Devitt and Sterelny, 1999; Lycan, 2000). After Bertrand Russell’s detailed expo-
sition of the first descriptionist theory of meaning in the early 20th century, such
theories where widely regarded as providing an analysis ample of solving Frege’s
puzzles. However, this was changed by the 1972 lectures of Saul Kripke, later pub-
lished as Naming and Necessity (Kripke, 1980). This lecture series caused a broad
revival of direct-reference theories, see e.g. (Stalnaker, 1999). The ensuing debate is
still unresolved, and the various arguments from both sides makes professor William
G. Lycan conclude in an entry on the semantics for proper names that

[What we are left with] is a trilemma, because it has further seemed that
we are stuck with one of these three possibilities: either the names are
Millian, or they abbreviate descriptions outright, or in some looser way
such as Searle’s, they have some substantive ‘sense’ or content. But none
of these views [are] acceptable. (Lycan, 2006, p. 272)

The topic of the semantics of singular terms is vase, and one route to determining
the correct semantics could be to expound the various arguments for and against the
various meaning theories, and try to find a theory compatible with all objections.
However, in the present thesis, a fundamentally different approach will be taken.
The debate hinted at above has focused on finding a proper theory of meaning for
natural language terms. Hence, the debate has focused on language itself and how
it is used. In contrast, the present thesis will focus on the language users and
their knowledge about the language they use. This is done by modeling agents that
possess a language, and who possess information about how this language relates to
the world. The focus will be on agents and their semantic competence. The hope

2Translated as ‘On Sense and Reference’, (Frege, 1980).
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Introduction

is that such an epistemic approach will be useful as an analytical tool, which can
be used to shed light on the informational structure of certain problems from the
philosophy of language. The shift in focus will be one from theories of meaning
to one of epistemic of meaning: instead of focusing on what difference a change in
theory of meaning makes to a problem, the theory of meaning will be kept constant
while the agents’ knowledge is altered. This shift in focus from analyzing theories of
meaning to analyzing agents’ information about such theories of meaning provides a
novel, and as will be argued, fruitful approach to classic problems in the philosophy
of language.

Audience

The present work is a master thesis in philosophy and mathematics with a focus on
philosophical problems analyzed using mathematical methods. In particular, it is
a modeling project, modeling cognitive aspects of language use utilizing tools from
quantified modal logic useful for constructing qualitative models. As such, both the
topics worked on, as well as the audience, divide.
One topic is philosophical. It is argued that focusing on semantic competence

adds an interesting and useful new dimensions to old discussions from the philoso-
phy of language. Whether these arguments are convincing depends on the reader’s
philosophical inclinations. The second topic is mathematical. In order to construct
a formal model of semantic competence, a new and very expressive family of modal
logics will be constructed. This family of logics is well-behaved, which a meta-
theoretic analysis of them will show. The proof of the main theorem will most likely
be hard to understand for most readers without a mathematical/logical background.
The same can be said with regard to many of the proofs of propositions and much
of the more rigorous argumentation used. The reader not interested in this is en-
couraged to skip it, at least on a first reading, and instead focus on the conclusions.
The content of most propositions shown are of direct philosophical interest as they
relay in a direct manner various features of the model.
Three distinct audiences are envisioned: one which focuses almost exclusively on

the philosophical aspects, but do not care much about formalism. Such should read
the thesis for its philosophical contribution, but might have a hard time under-
standing all arguments. A second audience is that trained in formal methods with
an interest in philosophy of language or epistemology. This is the main audience,
and for these readers, the thesis should introduce both all relevant formalism as
well as its philosophical interpretation. The final audience are those with a formal
training, but only with an interest in formal logic. They may find the philosoph-
ical arguments uninteresting, but should find all relevant definitions, lemmas and
argumentation presented in order to be convinced by the proofs for the properties
stated.

3



Chapter 1 Introduction

Aims
As mentioned above, the topics of the present work divide, but they work together
towards two joint aims:

1. To construct a formal theory of semantic competence, and

2. To show that using the formal theory as an analytical tool can be useful in
uncovering the informational structure behind problems from the philosophy
of language.

These aims are not in opposition to any well-known position, but the epistemic
logical approach is not typical in the philosophy of language.
The reason for choosing an epistemic logical approach to the topic of philosophy of

language is two-fold. First, epistemic logic is an active and fruitful research area. A
lot of research has been done recently in epistemic logic, rational interaction and the
dynamics of information exchange, see e.g. (Baltag and Smets, 2008; van Ditmarsch
et al., 2008; Grossi et al., 2009, 2010). Here, the qualitative modeling style of
epistemic logic has been successful in uncovering various informational aspects of
belief revision, learning, awareness, trust, questions and answers and more. Second,
many of these topics are close to those present in the philosophy of language. As
the possession of a language is a requirement for communication, it is natural to ask
what knowledge rational agents may have of their language, and to which degree
this affects their understanding of their language. So far, this question that has not
yet been addressed in the literature on logic and rational interaction.3 That the
approach is not mainstream in the philosophy of language, it is conjectured, is a
matter of the field traditionally focusing on theories of meaning in conjunction with
the relatively young age of the paradigm of epistemic logic.

Approach In order to obtain the first aim, a formal theory of semantic competence
is constructed by utilizing epistemic logical tools to model a conceptual theory of
lexical semantic competence based on empirical studies from cognitive neuropsy-
chology. The formal theory gives rise to various notions and degrees of semantic
competence, differing in the amount of information possessed by the agent in ques-
tion. In fact, in the theory it is easy to clearly distinguish between strengths of
semantic competence relevant for the example regarding ‘my brother’ above. Such
distinctions allows for an analysis of what information an agent can extract from a
statement, as this depends on the agent’s level of understanding.
The formal theory is identified with a logic. Yet, the fundamental approach will

be model-theoretic, and a completeness proof is therefore required in order to specify
the appropriate logic. The model-theoretic approach focuses on formula’s truth and
validity relative to a model or set of models. In contrast, the core notion in relation

3As mentioned in the acknowledgements, parts of this thesis has been presented at various occa-
sions, with senior researchers from the field present. Yet, the author was not referred to works
taking a similar approach.
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to logics is whether a formula is provable. A completeness result for a class of models
and a logic establishes the fact that anything valid in all the models can be proven
in the logic. Hence, where the model-theoretic structure validates the appropriate
formulas relative to the conceptual theory and the completeness result is proven, a
logic capable of proving all these validities is obtained.
The second aim is obtained by showing proof of concept. This is done by applying

the theory to a classical problem from the philosophy of language, namely Frege’s
Dilemma. Various versions of the problem is formalized using the concepts of the
theory, and it is shown how this gives a clear picture of the informational structure.
The problems are modeled as restrictions in the set-theoretic models, and it is shown
that given precise notions of semantic competence, they are compatible with the
theory of meaning they were originally used to reject. The detailed analyses of the
problems provides novel and intuitive solutions based on the uncovered informational
structure.

Limiting the project
Validation. As mentioned above, a formal theory/model of semantic competence
will be constructed and used. This model is to a high degree based on the con-
ceptual, non-formal model of (Marconi, 1997), which in turn is based on empirical
studies. Hence, the modeling construction taken as a whole compromises three dis-
tinct elements, namely 1) empirical findings supposed to reflect reality, 2) a concep-
tual model elucidating the important aspects of the collected data, and 3) a formal
model which ought to capture the important aspects of the conceptual theory, and
the logical consequences of which should fit further collected data.
In order to properly validate the model, all three points should be addressed.

However, this is beyond the scope of the present work. For review of the empirical
studies and the arguments in favor of the conceptual model, the interested reader is
referred to (Marconi, 1997). The reader interested in learning about the assumptions
and methods of cognitive neuropsychology is referred to (Coltheart, 2001).
Regarding the third point, this is done half-way, insofar as the model is constructed

to fit the properties of the conceptual model, but is not compared to further empirical
studies. Some properties which would allow for such a comparison is derived once
the formal theory has been constructed, and theoretic possibilities for falsifying
the model are discussed in section 5.5.2. A comparison with further studies is an
interesting venue for further research, but is far beyond the scope of the present
work.

Connections with philosophy. In this thesis, work is done on the epistemics of
understanding the meaning of words across possible worlds. Hence, all major ele-
ments of analytical philosophy are touched. Unfortunately, it is beyond the scope of
the present work to relate it to all the various debates in epistemology, metaphysics,
the philosophy of mind and the philosophy of language that could seem interesting.
As a consequence, a lot of assumptions are made without comment. For example is

5



Chapter 1 Introduction

neither semantic nor epistemic internalism/externalism discussed, though it should
be clear from the text that externalism is adopted. Neither is epistemic logic related
to epistemology in general, and the usage of epistemic alternatives and multiple
contexts not related to metaphysics. The basic assumptions of epistemic logic are
discussed, but not in relation to the general literature on the philosophy of mind.
The epistemic logical framework used as a modeling tool double as an epistemolog-
ical framework, and as such stands on it’s own. It is assumed that the paradigm of
epistemic logic is sound. These limitations are due to the complexity of these many
topics and the vast literature on these. An attempt to situate the present work to
these discussion would be to open Pandora’s box, and would delay the constructive
approach used to the point where nothing would be accomplished.
The core concept in the thesis is semantic competence. This is often seen as a part

of linguistic competence, which includes both semantic and syntactic competence.
Of these two, syntactic competence has received a lot of attention both in the philos-
ophy of language and in linguistics, see e.g. (Devitt, 2006). The notion of syntactic
competence will not be discussed in any but a trivial sense: agents are assumed and
modeled as syntactically competent with respect to single words, which is taken to
mean that they always know when two name tokens are of the same type.
Taking this into consideration, the focus of the thesis is rather narrow. The prag-

matic, epistemological framework of indistinguishability as embedded in quantified
S5 epistemic logic (see chapter 3) is taken as a proper modeling tool for certain
aspects of knowledge, and this is related to a possibly naive interpretation of hu-
man concepts, cognition and semantic competence. No problems regarding direct
cognitive connection with objects are discussed; it is assumed that the agents are
capable of identifying objects, and in some philosophically unspecified way represent
these cognitively. It is assumed that the agents are able to categorize the world they
inhabit. There will be no discussion of skepticism, only an information-based notion
of knowledge with the pragmatic goal of action. Language, words and meanings
are taken to be something which agents can have knowledge about, but only a very
limited range of language is modeled. Meaning is taken to be truth-conditional,
external, and is for each word assumed to be given by a function. All these elements
limit the scope of the project, hence making the subject feasible for the study of a
master thesis, but are of course open for discussion.

Outline
The thesis is structured as follows. Meaning and semantic competence are treated
in chapter 2. The Millian view of names is presented along with various objections,
among which are two raised by Frege in his classic paper. Following is a section
on semantic competence. In order to use such a theory to compare competence
levels of agents, the theory must conceive of semantic competence in a way that
allows for this. A selection of theories are presented and discussed in relation to the
requirements. The conceptual theory of (Marconi, 1997), which will be modeled in
chapter 5, is introduced among these. In chapter 3, the epistemological framework
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and modeling tool, epistemic logic, is introduced. This chapter includes two main
sections: one on propositional epistemic logic and one on quantified epistemic logic.
The propositional case is less mathematically challenging, but includes the main
philosophical ingredients: the possible worlds framework and the indistinguishabil-
ity notion of knowledge. Once the mathematics and philosophy of the propositional
case has been expounded, the system is extended to the first-order case, quanti-
fied epistemic logic (QEL). The mathematics of QEL are more complicated than the
propositional case due to the introduction of constants, predicates and quantifica-
tion. Each require a formal interpretation, but also a philosophical one. In this
respect, notions of concepts and object identification are in focus. As the modeling
of Marconi’s conceptual theory requires an augmented version of QEL, the fourth
chapter is devoted to a strict introduction of many-sorted modal logic. This chap-
ter is highly technical, and includes the main mathematical result of the thesis:
a theorem allowing for easy proofs of completeness for a large family of normal,
many-sorted modal logics. The theorem is variant of the Canonical Model Theorem
well-known from the literature on modal logic, see e.g. (Blackburn et al., 2001). One
of these many-sorted modal logics will be used to model Marconi’s theory, which is
introduced in chapter 5.4 The chapter outlines some simplifying assumptions regard-
ing Marconi’s theory and this simplified version is then modeled. It is shown that
the formal model includes the appropriate ontologies and can express the different
competence types from Marconi’s theory by modeling these as different information
states of the agents. The formal theory is throughout compared with Marconi’s
theory, and it is shown that it captures the important features. Furthermore, the
formal model is discussed with respect to properties not discussed by Marconi. No-
tably, more levels and competence types can be identified in the formal framework,
providing a more fine-grained taxonomy of semantic competence levels. In chapter
6, the model constructed is applied in order to show proof of concept. This is done
by analyzing the two Fregean puzzles introduced in chapter 2. The conclusion of
both puzzles depend on the agent’s understanding of natural language terms. The
puzzles are modeled in the constructed framework and evaluated by utilizing the
strict definitions of semantic competence obtained in the previous chapter. These
analyses, focusing on the epistemic state of the agents, provide natural solutions
to the puzzles. In one case, an intuitive objection is raised. The core insight of
the objection is that object identification often is context dependent. In order to
show that once this parameter is included in the model a satisfactory analysis and
solution is still provided by the epistemic approach, the model is augmented with
contexts in chapter 7. This structure is discussed from a logical and a philosophical
viewpoint, and an epistemic analysis of the puzzle is carried out, showing how the
objection silently includes an appeal to lacking cross-identificational knowledge. In
the final chapter, multiple cases from the philosophy of language where an epistemic
approach can be applied is outlined, and a general conclusion is drawn.

4The chapter is accessible to readers who skipped chapter 4.
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2 Meaning and Semantic
Competence

To relate world, language and agency, two important notions from the philosophy
of language will discussed in this chapter: meaning and semantic competence. The
viewpoint on meaning discussed in the present thesis is that of Millianism. An
introduction to Millianism and objections is the topic of the first section. Among the
objections is Frege’s Dilemma, an argument presented originally in Gottlöb Frege’s
Über Sinn und Bedeutung. Both disjuncts of the dilemma are argued by Frege
and other, see e.g. (Collin and Guldmann, 2010; Lycan, 2006), to be unfeasible.
Therefore, the dilemma is seen to be a definitive argument against Millianism. The
dilemma and the disjuncts, denoted Frege’s Puzzle about Identity and The Problem
of Non-Informativeness, are introduced below and later analyzed in chapter 6 using
a formal theory of semantic competence.
In order to construct such a formal theory, a conceptual starting point is required.

Therefore, the second section is devoted to the introduction and discussion of various
theories of semantic competence from the philosophical literature.
Due to the foundational character of the work, there will throughout be a focus

on the most basic terms from naturals language, namely singular terms. Singular
terms encompasses most notably proper names, like ‘Hans Reichenbach’ and ‘The
Morning Star’, but the use of ‘My brother’ in the example from the introduction is
also a singular term. The latter is also an instance of an indexical – a term changing
its meaning relative to the speaker. Though many indexicals are prominent, singular
terms, for simplicity such will not be considered.
Singular terms provide a natural starting point as these are among the most basic

terms of natural languages. They present the least complicated terms with respect
to meaning and reference, cf. (Collin and Guldmann, 2010). Further, they occur in
the most fundamental subject/predicate constructions and in almost all aspects of
daily communication and information transfer.

2.1 Millianism and Frege’s Puzzles
To first focus the relation between world and language, this section discusses mean-
ing. Demarcations can be drawn between various general viewpoints on the meaning
of natural language sentences and the proper way to analyze such. Most notably,
the theories of the 20th century have been focusing either on use or truth, cf. (Loar,
2006). Here, the focus will be on truth, and the tradition of truth-conditional seman-
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Chapter 2 Meaning and Semantic Competence

tics will be followed. As the arguments against Millianism rests on this approach, a
short introduction will be provided.
The core idea of truth-conditional semantics is that the meaning of the mor-

phemes1 of a given language, when organized into sentences, determine the meaning
of the sentence in a systematic way that allows one to settle whether the sentence
is true or false. A clear example of a language with adopted truth-conditional the-
ory of meaning is a first-order language L with semantics defined as usual, see e.g.
Hendricks and Pedersen (2011, ch. 4). Adopting a truth-conditional theory of mean-
ing for natural languages hence means assuming that this approach can be used to
analyze the sentences of natural language.
When defining the truth-conditions for formulas in first-order logic, the meaning

of the non-logical signs are given purely extensional. That is, the full meaning of
a constant is given by an object in the domain of interpretation, and the meaning
of a predicate is also given by it’s extension, a subset of the domain. The meaning
of the logical constants are taken to be functions from formula/truth-value pairs to
truth-values. The meaning of ‘and’, ‘∧’, for example, would be the function

((ϕ,>), (ψ,>)) −→ >
((ϕ,>), (ψ,⊥)) −→ ⊥
((ϕ,⊥), (ψ,>)) −→ ⊥
((ϕ,⊥), (ψ,⊥)) −→ ⊥

Here, ϕ and ψ are first-order formulas of the language L and > and ⊥ denote,
respectfully, truth and falsehood.
Truth-conditional theories of meaning have the intuitive strength of straight-

forwardly relating lexical items and sentences to the world via the “simple” notions
of truth and reference. As an underlying framework for meaning theories, it hence
expresses in a “simple” manner the informational content of a sentence (possibly
relative to a given context).
In the example above, it may seem that a truth-conditional approach entails that

meaning is expounded only in terms of extension/reference. This is not the case.
While the semantics used for first-order logic works in exactly that way for the non-
logical signs, other theories of meaning are compatible with the truth-conditional
view. It is typically argued, though, that reference lies at the heart of meaning,
and that this aspect must be considered in order to construct a feasible theory of
meaning. As case in point is Devitt and Sterelny (1999), who refer to this viewpoint
as the representational thesis. Arguments aiming to gain support for this thesis
typically revolve around the use of language to convey information about the world.
In order for terms to be useful in conveying information about the world, they must
in some way stand in a relation to the world, and a simple hypothesis is that this
relation is that of reference. Working in the tradition of truth-conditional semantics

1The smallest meaning carrying items of the language. For example proper names, logical con-
nectives and certain prefixes – like ‘un-’.
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further forces one to accept this thesis as the non-logical terms must refer for truth
to be determined.2
Truth-conditional semantics does not dictate that reference must be the only

aspect there is to meaning. In order to solve his puzzles (see below), Frege added
an additional layer, namely ‘sense’. The literature on this is vast, and will not be
considered as the main focus is not on theories of meaning, but instead on the agents’
information.
In order to utilize any type of truth-conditional semantics, some theory of meaning

for the morphemes must be chosen. In the following, the simplest such, Millianism,
will be expounded.

2.1.1 Millianism
Named after John Stuart Mill, who famously presented the theory in his 1843 book,
A System of Logic, the core claim of Millianism is that the meaning of a word is
exhausted by its referent. Hence, the semantics for first-order logic discussed above
may be seen as an instance of a Millian theory of meaning: the full meaning of a
constant is its extension.
As a general theory of meaning, Millianism may seem obviously insufficient. As

Lycan (2000) argues, for example, the logical connectives seem not to denote any-
thing.3 Or, if words are merely names of objects, then sentences are merely strings
of names: but strings of names does not, in any obviously way, possess meaning like
sentences do.4 Hence, Millianism for all words may seem implausible, but it does
seem to have a certain merit when the discussion turns to singular terms.
Taking the “Millian view” of names, as Devitt and Sterelny (1999) calls it, implies

that names work merely as labels attached to objects.5 For this reason, the theory
has also been referred to as the label theory (Collin and Guldmann, 2010). The
view states that the meaning of a given, unambiguous proper name is constituted
solely by the object to which the name refers, i.e. by its referent. On this view,
the meaning of the name ‘Hesperus’ (the Evening Star) is constituted by the planet
Venus construed as an existing object, and nothing more. Hence, strictly speaking,
the meaning of the name is the referent of the name.
One strong argument in favor of Millianism is that it is a minimal theory of

meaning. It assumes only one aspect of meaning, namely reference, and as this
aspect is required by the representational thesis mentioned above, it cannot be
given up unless truth-conditional semantics are abandoned.

2Depending on ones notion of truth. In the present, a correspondence theory of truth will be
assumed without further argument. For an introduction, see (Collin and Guldmann, 2010).

3One could argue that logical connectives refer to functions, as mentioned above, but this discus-
sion is for the present irrelevant.

4Lycan (2000) invites us to consider the string ‘Fred Martha Irving Phyllis’ and remarks that
even if two of those names denote abstract properties, it would still not be seen as meaningful
as normal sentences are.

5Theories regarding how names are attached to objects are know as theories of reference. The
possible choices for such will not be discussed.
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2.1.2 Frege’s Dillemma
Unfortunately, the argument above apparently in favor of Millanism can also be
framed as one of the most prominent arguments against it. The specific counter-
argument is often referred to as Frege’s Puzzle about Identity, cf. (Lycan, 2000), and
originates from Gottlöb Frege’s classical 1892 paper Über Sinn und Bedeutung6. The
problem, as Lycan presents it, is one disjunct of a dilemma Frege puts to Millianism,
cf. (Collin and Guldmann, 2010).
The dilemma revolves around the way one should understand identity statements.

Assume that ‘n1’ and ‘n2’ are two names from a language which also includes an
identity relation ‘=’, and form the sentence ‘n1 = n2’. This compound expression
can be ambiguous. As Collin and Guldmann puts it,

[The] identity relation expresses a relation between objects or between
signs that refer to objects. (Collin and Guldmann, 2010, p.49)

If the first disjunct is adopted, Frege’s Puzzle about Identity results. If the sec-
ond disjunct is opted for, a problem which will be denoted The Problem of Non-
Informativeness results. These will now be presented in turn.

Frege’s Puzzle about Identity If one chooses the first disjunct in the above-
mentioned dilemma while holding a Millian theory of names, one may be confronted
with the following argument which implies an inconsistent theory. Consider the two
true identity statements

(a) Hesperus is Hesperus

(b) Hesperus is Phosphorus

Given that the two names co-refer7, all terms in the two identity statements have
the same meaning, and hence (a) and (b) must have the same meaning from a
truth-conditional point of view. Therefore, according to Millianism, (a) and (b)
must be equally informative to a semantically competent speaker of English. As the
first is a trivial validity of self-identity, this does obviously not carry informational
content. Opposed to this, the latter seems to be a contingent, empirical fact, and
hence convey information. If this is true, (a) and (b) do differ in informational
content, and the Millian view should be rejected. The argument can be pinned out
as follows:

(A) (a) and (b) mean the same.

(A→B) If (a) and (b) mean the same, then a semantically competent speaker would
know that (a) and (b) mean the same.

6‘On Sense and Reference’, listed as (Frege, 1980).
7‘Phosphorus’ or ‘the Morning Star’ does in fact denote the planet Venus. So does ‘Hesperus’
and ‘the Evening Star’.
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(B→C) If a semantically competent speaker would know that (a) and (b) mean the
same, then they are equally informative to the speaker.

(¬C) (a) and (b) differ in informativeness to the competent speaker.

∴ Contradiction.
The four premises are jointly inconsistent, and the typical textbook choice.8 is
to reject premise (A). This premise is a consequence of the Millian view, and the
conclusion drawn is that there must be more to meaning than mere reference.

The Problem of Non-Informativeness The first disjunct of Frege’s Dilemma
seems to be inconsistent with the Millian view, and the Millian is therefore forced
to opt for the second disjunct. This, however, is equally problematic, as will now be
argued.
If the second disjunct of the dilemma is chosen, then, where n1 and n2 are proper

names,
the informational content of the sentence ‘[n1 = n2]’ consists in the
sentence’s expressing the fact that the sign ‘[n1]’ designates the same
object as the sign ‘[n2]’. (ibid., p.49-50)

This may be seen as problematic, as the identity statement no longer conveys in-
formation regarding non-linguistic reality, but rather about linguistic conventions.
It is argued in (Collin and Guldmann, 2010) that this disjunct too is unfeasible,
as identity statements will be vacuous. The problem arises, they argue, since be-
ing informed that n1 refers to the same object as n2 does not provide information
about word-world relations unless it is already know which object n2 refers to. It is
concluded that

[u]ntil we do, we are [in possession] of an item of information about two
languages and not knowledge about the world. (ibid., p.50)

Though not a knock-down argument, the counter-intuitive conclusion of this argu-
ment forces one, it is argued by Frege, to choose the first disjunct, which in turn
drives us out of the “Millian paradise”, to borrow an expression from (Devitt and
Sterelny, 1999).

2.1.3 Further Objections
There are many further objections to the Millian view, even when this is restricted
to only proper names. These objections are introduced here as they will become
relevant in chapter 8, where they will be discussed in relation to venues for fur-
ther research. The objections originate with Frege and Russell. The formulations
presented here stem from various textbooks, see e.g. Lycan (2000); Collin and Guld-
mann (2010); Gundersen (2003).

8See, e.g., (Collin and Guldmann, 2010), (Lycan, 2000) or (Gundersen, 2003).
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The Problem of Substitutivity The Problem of Substitutivity revolves around
Leibniz’ Law or Substitution of Equals when used in relation to belief ascriptions.
As an axiom of first-order logic, this states that for some formula with occurrences of
a, denoted ϕ (a), and the same proposition with occurrences of b replacing all those
of a, denoted ϕ (b), if a = b then ϕ (a) is provable if, and only if, ϕ (b) is provable.
That is, the two are logically equivalent, so whenever one has an occurrence of the
first and the true identity statement, one can obtain the other via logically valid
deduction. In section 3.2.4, this principle will be referred to as the Principle of
Substitution:

(x = y)→ (ϕ (x)↔ ϕ (y))

The problem posed to Millianism, then, is that this fails in intentional, ‘opaque’
contexts, like that of belief. Consider the proposition ‘Lois Lane believes that Clarke
Kent wears glasses’. In the fictive universe of Joe Shuster og Jerry Siegel, this
proposition would probably hold true. In the same universe, so would the identity
statement ‘Clarke Kent = Superman’, and thus, by Leibniz’ Law, so should ‘Lois
Lane believes that Superman wears glasses’. But this is a false belief ascription, and
the obtained sentence is therefore false. Hence, as Leibniz’ Law preserves truth-
values when substituting names that mean the same with one another, but the
exemplified proposition changes its truth-value, there must be more to the meaning
of names than mere reference.

The Problem of Empty Names In the example just given, names of fictive char-
acters was deliberately used. Supposedly, the reader had no problems understanding
the paragraph. Given the Millian view of names, this is quite mysterious. For how
could any sentence involving names of such non-existent entities as ‘Superman’ be
understood when part of the components in it literally have no meaning? Given
that the meaning of ‘Superman’ is the referent of the name, and this referent does
not exist, it must follow that the name has no meaning. Hence, it may be concluded
that there must be more to the meaning of names than mere reference, for otherwise
‘Superman’ would be meaningless.

The Problem of Existence Statements Closely related to the problem of empty
names is that of existential statements, i.e. statements that claim the existence, or
lack thereof, of the bearer of a name. Consider the statements ‘Superman exists’ and
‘Superman does not exist’. These two statements are the negations of one another,
and by the law of the excluded middle9, one of them should hold true.
As the first statement is meaningful, which it is by ‘intuition’, then it must be true

– for on the Millian view, only names that refer have meaning, and the statement
could not be meaningful if one of the terms in it where not. But this violates
reality, because Superman does not exist. However, looking at negated statement,

9The law of the excluded middle says that for all propositions p, either p is the case, or p is not
the case, where the latter is understood as stating that not-p is the case. If this disjunction is
assumed in a logic, one can conclude from the falsity of p to the truth of not-p and vice versa.
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this, too, is meaningful. But if it is meaningful, then not only is it false, it is a
logical contradiction. But this conclusion is too strong. For though its falsity is in
agreement with current facts, it is still a metaphysical possibility that Superman
could have existed in some other possible world. But then this world would be
violating the laws of logic. Such paradoxes cannot be tolerated, and the only possible
conclusion is that there must be more to meaning of names than mere reference.

In what follows As mentioned in the introduction, Frege’s Dilemma will be used
as case studies for an epistemic analysis, and solved in order to provide a proof
of concept. Alas, constructing and introducing a framework capable of analyzing
all the above objections is beyond the scope of the present work. Once the formal
theory for semantic competence has been introduced and applied, possible extensions
capable of modeling these objections are addressed as venues for further research
(see chapter 8). For the analysis of the disjuncts in Frege’s Dilemma, a more simple
framework is required, as the modeling required does not have to include terms for
non-existing objects or beliefs in the agents’ language.
The four objections caused a widespread dismissal of Millianism as a proper the-

ory of meaning for names throughout the 20th century. As an alternative, Frege
suggested a dual aspect theory of meaning, where the meaning of names consisted
in both their reference and sense (an objective ‘mode of presentation’). Elaborating
on this theory, Russell introduced his description theory, according to which the
meaning of a name was a definite description. Various critiques raised later caused
Searle to introduce a variant of the theory, where a single definite description was
replaced by a cluster of such.10 These dual aspect theories were in turn challenged by
Kripke (1980), arguing that names function as rigid designators, meaning that they
denote the same individual in all metaphysically possible worlds. This hypothesis is
inconsistent with the mentioned dual aspect views, and caused a wide rejection of
these, as well as a revival of variants of Millian theories of meaning, often denoted
direct reference theories.
The discussion on the semantics of singular terms after Kripke is nicely summa-

rized by the quote of William G. Lycan in the introduction, stating that a trilemma
seems to be in effect. Solutions to the trilemma have been constructed, see Lycan
(2006) for references.
In the following, a different strategy will be adopted. In the hope that a bloated

ontology of more complex meaning theories can be avoided, the focus is changed
from theories of meaning to theories of semantic competence. To show the viability
of this approach, Frege’s Dilemma will be analyzed in light of the information the
agents possess about their language and the way this language is related to the world
they inhabit.

10See e.g. (Lycan, 2000) for an introduction to these theories and the various objections.
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2.2 Semantic Competence
Semantic competence is in general not a well-defined term, and its usage is far from
standardized. Often, the notion is used without explicating its meaning, and even in
articles seemingly focusing explicitly on the topic, the notion is left undiscussed (see
e.g. Callaway’s Semantic Competence and Truth-Conditional Semantics (1988)).
The notion will here be used as an information comparison device between agents
regarding their knowledge of the language they use. As such, it is used as an
objective measure, which allows for objective, inter-subjective comparison of said
competence. This means that the sought for a theory must give clear criteria for
whether an agent is semantically competent or not, where the verdict of competence
is independent of those how pass it and the situation in which it is passed.
Such a use is in contrast to the view of semantic competence used in (Rast, 2006),

which depends on both subjective status and social context. Rast argues that

successful identification of the semantic referent is not generally a re-
quirement by virtue of linguistic competence. (p. 37)

Rast draws this conclusion as he can produce situations of successful communication
where the parties involved are unable to identify the referents of proper names. The
requirements put to speakers in Rast’s setting is highly context dependent. In one
example, Alice working in customs is competent when stating “The RMS St. Helena
has a capacity of 128 passengers”, though she is unable to identify the relevant ship.
“In this case,” Rast writes, “she might not be required to be able to identify the
ship in question, simply because it is not part of her job.” (p. 39). Besides being
context dependent, Rast’s use is highly subjective: an example is cited where a
history professor is unable to identify George Washington on a one dollar bill and
is indirectly deemed incompetent with respect to the name due to his expertise,
whereas other speakers without said expertise in the same context may be deemed
competent with respect to the name without the ability to perform the required
identification.
In contrast to this view, where semantic competence is a matter of peer judgment

relative to subject and context, the notion of semantic competence used in the
present is intended as an objective one. This notion is to be used to construct a
theory of semantic competence which provides clear-cut characteristics, that allows
for inter-subjective comparison of competence levels. Such a theory is sought in order
to investigate how the competence level of language users affect the arguments of
the preceding section.
It should be noted that it is assumed that a satisfactory notion of semantic com-

petence simpliciter cannot be found. Rather, it is assumed that agents will be
semantically competent with respect to some part of language – be it a language,
a sentence or a set of sentences or lexical items. The theories regarded here fo-
cuses on sentence and lexical semantic competence, with the previous being more
coarse-grained. This will be regarded first, where-after the more detailed cases are
examined.
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2.2.1 Truth-Theoretic Semantic Competence
A rather rough theory of semantic competence may be derived from the Fregean/Tractatus-
Wittgensteinian11 view of meaning and understanding. This rests on the core thesis
of truth-conditional semantics, namely that a sentence’s meaning can be equated
with its truth conditions. Understanding a sentence is then equated with knowing
its truth conditions, or, as Wittgenstein puts it in Tractatus Logico-Philosophicus12

4.024 To understand a sentence in use means to know what is the case
if it is true.

On this view, being semantically competent with respect to a sentence S of some
language L with truth conditions T is equivalent to knowing that

S is true (in L) iff13 T

To illustrate using a classic example, then semantic competence with respect to the
German sentence ‘Schnee ist Weiß’ amounts to knowing that

‘Schnee ist Weiß’ is true (in German) iff snow is white

Such bi-conditional statements are well-known from the two prominent figures in
20th century philosophy, namely Tarski and Davidson. The former finds that such
T-sentences (or T schema’s) can fully describe the meaning of formulas from formal
languages (Tarski, 1972), as is common practice today, whereas the latter found that
a theory of meaning for a natural language would be a finitely axiomatized theory
yielding as theorems T-sentences, one for each sentence in the natural language,
where the truth-conditions are purely extensional (Davidson, 1984) – a thesis know
as Davidson’s Program.
A stronger version of the view may be formulated by incorporating knowledge

across possible worlds, as is done by Lycan when he writes:

It is often said that a person P knows the meaning of a sentence S if P
knows S’s truth-conditions, in the sense that given any possible world
(or possible situation), P knows whether S is true in that world (or
situation). (Lycan, 1994, p. 203)

This latter formulation sets stricter standards for language users in order for them
to be semantically competent with respect to a given sentence, as the former only
requires knowledge in one possible world, namely the actual, whereas the latter
11Exactly who has supported this view, and to what degree, is beyond the scope of this thesis.

Two articles criticizing similar views are (Lycan, 1994) and (Soames, 1989), but neither are
explicit about who holds these views.

12The quote is adopted from Wiggins (1999, p. 5).
13‘iff’ is used throughout as an abbreviation of ’if, and only if’
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requires knowledge across all. Both views have been criticized in (Lycan, 1994, ch.
9) and (Soames, 1989).
Both formulations has certain merits for the present purpose. In particular, they

allow for a inter-subjective comparison of competence with respect to sentences
based on a strict measure. In the weaker formulation, it may, based on agent knowl-
edge of T-schema’s, be decided whether the two agents are equally competent with
respect to a given sentence. The stronger version allows for the same comparison
regarding an agent’s knowledge across the set of possible worlds. Combining the
weaker notion with the possible worlds framework would allow for a hierarchy based
on the cardinality of the set of possible worlds in which the agents are competent in
the weaker sense.
Yet, one can argue that both views ultimately only allow for a bivalent judgment

regarding sentence competence per possible world. In fact, any theory which has
sentences as the smallest element with which agents can be competent is flawed in
the sense they allow for a less fine-grained division of levels of semantic competence
than theories that focus on word (lexical) competence. To see this, assume that two
agents are both incompetent with respect to a simple subject/predicate sentence.
In this case, a sentence-based theory will characterize them both as being equally
incompetent with respect to the sentence. A lexical theory will be able to judge why:
one agent may be incompetent with respect to the subject, whereas the other may
be incompetent with respect to the predicate or both. Hence, the sentence-based
approach would in this case provide one category, whereas a lexical-based would
provide three.
Further, exactly due to its focus on sentences, such theories can be criticized

regarding learnability. As argued by Davidson (1984), any language and theory of
meaning must consist of a finite set of morphemes and a finite set of syntactic and
semantic rules in order for its infinitely many sentences to be learnable by a finite
agent. Such requirements are not in thread with either of the above theories of
semantic competence. These theories in fact precludes the possibility of semantic
competence with respect to natural languages: natural languages can produce an
infinity of sentences and hence no finite agent can know a T-sentence for each. This
insight further strengthens the idea of a theory of semantic competence which takes
a lexical focus.
In fact, an alternative source (Wittgenstein, 1922) for the above Wittgenstein

quote suggests a partial lexical focus in his viewpoints as well:

4.024 To understand a proposition means to know what is the case, if
it is true.
(One can therefore understand it without knowing whether it is
true or not.)
One understands it if one understands its constituent parts.

Here, the last line indicates a relation between sentence and lexical understanding,
though which relation depends on how one reads the latter implication. As the
present thesis is not meant as an excursion in interpreting Wittgenstein, this will
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not be dwelt on. Instead, the topic will be changed to theories focusing explicitly
on lexical semantic competence.

2.2.2 The Translation-Ability view
To find a theory of semantic competence which allows for an objective, inter-
subjective comparison of language users, lexical theories seems to provide a degree
of detail not present in sentence based theories. One theory of semantic competence
which takes a lexical focus is presented in (Devitt and Sterelny, 1999). Here, the
notion is embedded in a general framework of linguistic competence, which consists
of syntactic competence and lexical competence.
Notably, the viewpoint presented by Devitt and Sterelny does not consist in propo-

sitional knowledge, but is ability based:

Understanding a language no more involves having propositional knowl-
edge of a semantic sort about the language, or representing its rules, than
being able to ride a bicycle involves having propositional knowledge of a
mechanical sort about riding, or of representing the mechanics of riding.
(Devitt and Sterelny, 1999, p. 187)

On their view, competence in using a language is an ability to utilize the constructs
of the language to express thoughts which have the appropriate meaning in relation
to the language used. Further, it is an ability to relate constructs of the language
to thoughts which have such appropriate meanings. From this it is concluded that
linguistic competence requires a certain amount of conceptual competence. In par-
ticular, agents must be able to entertain thoughts with the appropriate meanings.
Devitt and Sterelny accept the Language of Thought Hypothesis, and this concep-
tual competence is spelled out in terms of competence with respect to Mentalese14.
Specifically,

competence in the language requires the competence to think Mentalese
sentences with meanings expressible in the language. (p. 188)

Based on the assumption of competence with Mentalese, syntactical and lexical
competence is regarded by Devitt and Sterelny as two translational abilities. For
syntactical competence, this requires the ability to translate between sentences from
the given language and sentences of Mentalese such that the appropriate sentences
have “structure similar enough to count as translations.” (p. 188). It is further
required that the agent is syntactically competent with respect to Mentalese, which
consists in the ability to construct Mentalese sentences based on the Mentalese
lexicon. Syntactical competence will not be discussed further.
14In one sentence, the Language of Thought Hypothesis states that all thinking is done in a

physically realized language in the brain of the subject. The language of thought is often
referred to as Mentalese. The correctness of the hypothesis will not be discussed, but for an
introduction, see (Aydede, 2010).
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Devitt and Sterelny does not discuss semantic, lexical competence much. For
such competence, they hold that the agent must be able to translate back and forth
between lexical items and their corresponding Mentalese counterparts. A more
detailed description of what such a translational ability consists in is not discussed,
and regarding it’s acquisition it is only noted that this is an ability an agent has “in
virtue of being part of the causal network for [the word].” (p. 189).
They further state that in order to be genuinely competent with the language,

any agent must also be competent with respect to the appropriate Mentalese lexical
items. What is required for this competence depends on which of at least two types
of words is in question.
For basic words, the meaning of which are given by direct reference theories,

competence with their Mentalese counterpart consists in “having thoughts that are
appropriately linked, either directly or indirectly, to [the referent]”. (p. 189). Here,
having directly linked thoughts to the referent will be perceptual confrontations with
the referent, whereas indirect links are by reference-borrowing and the like.
Regarding “the least basic words”, which have their referents determined by a

description theory of reference fixing, competence consists in associating appropriate
words to one another and drawing appropriate inferences – for example associating
the Mentalese ‘bachelor’ to the Mentalese ‘male’, and inferring in Mentalese ‘x is
male’ from ‘x is a bachelor’.
The exposition from (Devitt and Sterelny, 1999) of this last kind of competence

does leave a lot to be wished for. Important key notions are given only a super-
ficial treatment, as for example competence with Mentalese lexical items and how
this ability is acquired. For the present purposes, this is a weakness of the the-
ory. In particular, it is not easy to see how one may judge an agent competent or
incompetent with respect to a certain Mentalese word (or mental concept, if the
language-of-thought hypothesis is discarded). Experts regarding certain immuno-
logical terms will supposedly be deemed competent with respect to their Mentalese
counterparts, but as agents’ thoughts may also be indirectly linked to the referent
through for example a causal network and reference borrowing, any child using ‘cyto-
toxic lymphocyte’ while intending to use it as his father from biomedicine will have
appropriately linked thoughts, and hence be deemed competent. Hence, this no-
tion of competence is quite vague, which in turn makes inter-subjective comparison
difficult.
However, the theory does evade the problem of learnability posed above against

the truth-theoretic account of semantic competence. It is sufficient for an agent to
learn syntactic rules along with the meanings of morphemes in order to be linguis-
tically competent with respect to the given language.
Finally, it’s worth noting that the theory allows for two different aspects of seman-

tic competence, though this is not explicitly commented on by Devitt and Sterelny.
These two aspects are on the one hand that of acquaintance with objects as required
for competence with basic words, and on the other hand issues regarding the rela-
tions among words, allowing for analytical inference. This distinction is not unique
to Devitt and Sterelny, though, as will be seen in the following section.
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2.2 Semantic Competence

Graphical LexiconPhonological Lexicon

Semantic Lexicon

Real-World Objects

Inference

Application Naming

Figure 2.2.1: Marconi’s theory of the structure of lexical competence. Dotted lines represent
instantiations of competence types. The illustration is an altered version of (Marconi, 1997, fig.
3.2, p. 72).

2.2.3 Marconi and Lexical Competence
A more specific theory of semantic, lexical competence can be found in (Marconi,
1997). Here, Diego Marconi constructs a conceptual theory of the structure of such
competence, based on studies in cognitive neuropsychology15. As will be argued, this
theory is the one regarded best suited for the present purpose, and will subsequently
be the theory modeled. In (Marconi, 1997, Ch. 3), the theory is regarded as a theory
of the Structure of Lexical Competence. The proposed structure will be referred to
as the SLC.
The elements of the theory consist of three relations defined over three ontologies:

real-world objects16, word lexica and the semantic lexicon. Each of the three relations
correspond to a competence type. These are inferential competence and two types
of referential competence, being naming and application, see Figure 2.2.1.

Word Lexica The word lexica are sets of words given by some perceptual mode.
In particular, Marconi mentions the phonological lexicon and the graphic lexicon.
The phonological lexicon is a set of auditive perceived words, where-as the graphic
lexicon is a set of visually perceived words. Though not mentioned by Marconi,
further lexica could be imagined, for example a tactile lexicon had by people who
can read Braille.
Each word lexicon consists of the words familiar to the subject, supposedly when

15For the review of these studies, arguments for the structure and references to relevant literature,
the reader is referred to (Marconi, 1997, ch. 3).

16Marconi does not discuss the metaphysical nature of real-world objects, and neither will such a
discussion be presented here. It is merely assumed that a world of objects does exist and that
these exhibit common-sense properties such as temporal duration.
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the words are known by the given mode of perception. One must assume the latter
as it obviously can be the case that a subject may have a large phonological lexicon
but a small to non-existent graphic lexicon – as exemplified by children who have
not yet learned to read.

Semantic Lexicon The semantic lexicon is “a collection of mental representations
distinct from the representations of both phonological and graphic word forms.”
(Marconi, 1997, endnote p. 71). Though Marconi is far from explicit about the
exact nature of these mental representations, it will be assumed that the semantic
lexicon consists of the non-linguistic concepts possessed by the subject. It will be
assumed that these concepts coincide with those modeled in epistemic logic, see
section 3.2.3.17

Interesting discussions from the philosophy of mind present themselves regarding
the exact nature and existence of such concepts, but these will not be dealt with.
It will merely be noted that humans classify worldly objects and do have mental
representations of this classification.18 Where a given class consists of multiple
objects, this will be denoted a concept. Where it only encompasses a single object,
it will be denoted an individual concept. It is assumed that the concepts Marconi
has in mind coincides with this use.

Inferential Competence Inferential competence is a knowledge-based ability to
draw semantic inferences regarding connections between words. This ability is
founded in knowledge of true sentences involving the relevant words.
Such a true sentence with respect to the words ‘apple’ and ‘fruit’ would be ‘all

apples are fruits’. Marconi illustrates the concept by an example that invokes a
bookish zoologist: though the zoologist may never have been in contact with a
certain species of butterflies, he may nevertheless be inferentially competent with
respect to its name as he would know many facts of the species.
In broad terms, inferential competence is

the ability to manage a network of connections among words [through the
semantic lexicon], underlying such performances as semantic inference,
paraphrase, definition, retrieval of a word from its definition, finding a
synonym, and so forth. (ibid., p.59)

Inferential competence performances involve two of the three ontologies, namely the
word lexica (or one such) and the semantic lexicon. Marconi states that one can

[describe] the kind of performances in which inferential competence is
typically displayed ... as following word-word routes through the seman-
tic lexicon. (p. 71)

17This is a non-trivial assumption, but it is beyond the scope of this thesis to dive into the
intricacies of mental representations and concepts beyond what the discussion to come of the
interpretation of epistemic logic.

18Again, this is a non-trivial assumption, and the previous note can be restated.
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This is illustrated in Figure 2.2.1. The mental gymnastics exercised in applying
inferential competence is thus a process occurring in the semantic lexicon: it is in
the semantic lexicon that the relation between the mental representations exist, and
no such relation exist in the word lexicon. Notably, no such relation exist within a
word lexicon.
Based on Marconi’s description, see pp. 69-71, an inferential performance seems

to require three steps: 1) having knowledge of a lexical item which connects this to
a (individual) concept in the semantic lexicon, 2) having a mental representation of
a relationship (concept) between this concept and another concept, and 3) having
knowledge connecting the mental representation of the relationship and the latter
concept with each their lexical item, resulting in knowledge of a connection between
three lexical items, for example ‘Socrates is human’.

Referential Competence Referential competence, in turn, is “the ability to map
lexical items onto the world” (p. 60), a knowledge-based ability involving all three
ontologies consisting of two distinct subsystems.
The first of these subsystems is that of naming. Naming is the act of retrieving

a lexical item from the appropriate word lexicon when presented with an object. It
is assumed that this act, if successful, is carried out by 1) having knowledge of a
lexical item connecting this to a concept in the semantic lexicon and 2) knowledge
connecting this concept to a real-world object. It should be noted that the degree
of successfulness of the act depends in both steps on the concept invoked in the
semantic lexicon. In particular, the act may be less successful if this concept does not
individuate an object. In relation to epistemic logic, this is discussed in section 3.2.3.
The second subsystem is that of application. Application is the act of identifying

an object when presented with an object. Again, this is a two-stage process, which
requires 1) knowledge connecting a real-world object to a concept in the semantic
lexicon, and 2) knowledge connecting this concept with a lexical item from the
appropriate word lexicon. The same note as above may be applied here. That
the notions of ambiguity of concept from epistemic logic are invoked is warranted
by the interpretation of this as object identification – or, as Marconi puts it, object
recognition. The issue will be discussed in section 3.2.3. Both processes of referential
competence are illustrated in Figure 2.2.1.

Empirical Reasons for Multiple Lexica and Competence Types Marconi’s SLC
may seem overly complex. It may be questioned, for example, why one should dis-
tinguish between word and semantic type lexicas, or why referential competence is
composed of two separate competence types, instead of one bi-directional. The rea-
son for distinguishing between two types of lexica, as well as for individuating the
three types of competence, is based on empirical studies from cognitive neuropsy-
chology. These studies reviews of subject with various brain-injuries, and indicate
that these modules of human cognition are separate. In (Marconi, 1997), literature
from cognitive neuropsychology is reviewed in support of this distinctness.

23



Chapter 2 Meaning and Semantic Competence

In the terminology of (Coltheart, 2001), impairments of the three competence
types show double dissociation. Dissociation between two impairments are said to
exist when patients showing one may not show the second. When other patients
show dissociation in the reverse direction, a double dissociation is said to exist. It
is argued in (Marconi, 1997) that inferential competence is double dissociated from
referential competence, and that the two types of referential competence are double
dissociated.
The hypothesis that the word lexica and the semantic lexicon are distinct are sup-

ported by cases where patients are able to recognize various objects, but are unable
to name them (they cannot access the word lexicon from the semantic lexicon). In
the opposite direction, cases are reported where patients are able to reason about
objects and their relations when shown the objects, yet unable to do the same when
prompted by their names (i.e., the patients cannot access the semantic lexicon from
the word lexicon). The latter cases provides support for the hypothesis that reason-
ing is done with elements from the semantic lexicon, rather than with items from
any of the word lexica.
Now, Marconi’s study is from 1997, so newer publications from cognitive neu-

ropsychology may show that the proposed structure of lexical competence to be
wrong. It is beyond the scope of this thesis to review the literature of cognitive
neuropsychology since the publication of (Marconi, 1997). The consistency of the
architecture proposed with newer empirical research can therefore not be evaluated.

2.2.4 Theory Comparison and Choice
The theories from the above sections will now be compared, and it will be argued
that Marconi’s SLC is best suited as the basis for a theory of semantic competence
that allows for objective, inter-subjective comparison of language users.
The theories of Devitt and Sterelny and Marconi differ vastly from the truth-

theoretic theory of section 2.2.1 in that they both include the lexical aspects. Yet,
in structure, the former seem to resemble one another: both suggest a duality in
the cognitive structure, one part consisting of natural language words, the other of
mental entities. Words are related to mental entities, and these entities are in turn
related to the world. The concrete mechanisms of these relations vary. In particular,
where the exposition of Devitt and Sterelny is philosophically heavily theory-laden,
Marconi’s SLC is based on empirical data with few philosophical assumptions.
Based on the exposition above, it can be seen that both have a dual notion of

semantic competence. Marconi directly analyses competence in terms of referential
and inferential competence, whereas Devitt and Sterelny focus on competence with
different word types, depending on the way they conceive these words have been
given meaning. The two aspects they utilize are ultimately similar to referential and
inferential competence: basic competence with basic words is similar to referential
competence, where-as competence with “least basic words” is similar to inferential
competence. Devitt and Sterelny require only one type per word, whereas Marconi
always includes both types.
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The general structure proposed by both has clear merits as the outline for a
formal theory of semantic competence, but due to the more detailed presentation of
Marconi’s viewpoint, this will be the conceptual model that will be focused on in
the present thesis, for the following reasons.
First, the cognitive structure of language using agents, including the relationships

between the various competence types, is made clear in Marconi’s SLC, and this with
empirical backing. The shown relationship between the various modules makes the
modeling easier, in that less guesswork will be involved. Moreover, that the structure
is based on empirical data allows for a comparison of the model with further data
in subsequent works.
Secondly, that the competence types and their roles are more clearly defined

makes the notions of the SLC easier to apply to agents than the theory of Devitt and
Sterelny. In particular, it is easier to determine whether or not an agent is competent
in a certain respect, which in turn allows for easier inter-subjective comparison.
Specifically, it is easy to test whether an agent is referentially competent of either
type, as it merely requires to ‘ask’ the agent to identify the word/object in question.19

It is further easy to decide whether an agent is inferentially competent with respect
to a word by similar tests.
It should be noted though, that the notion of inferential competence has theoret-

ical problems in relation to empirical testing. In order to decide whether a subject
is inferentially competent with some word, the subject is required to perform se-
mantic inferences, paraphrase, define and find a synonym for the word presumingly
until the tester is happy that the subject knows the inferential meaning of the word.
But the inferential meaning of a word is notoriously hard or impossible to define:
this is very close to the problem of finding a principled basis for cluster description
theories of meanings for proper names, as discussed by Devitt and Sterelny (1999,
p. 51). This problem will be circumvented when modeling inferential competence.
The modeling will be done for a language containing only proper names and identity,
and in that case, precise definitions of inferential competence with respect to a name
can be given. As the competence types can be clearly applied for each word in the
modeled framework, it will hence further be possible to make precise inter-subjective
comparisons for competence levels.
Finally, the precision of the structure presented by Marconi makes the SLC inter-

esting to model as the modeling to a higher degree can be validated. In particular,
the structure must be captured so it is possible to express the various competence
types. Further, the modeling must respect the constraints regarding the relationship
between competence types.
In chapter 5, a modeling of a slightly simplified version of Marconi’s structure of

lexical competence, will be undertaken. This will build on the logical framework of
quantified epistemic logic, introduced in the following chapter.

19In a formal setting by checking the knowledge of the agent, and in an empirical testing, by
actually asking the subject – perhaps sufficiently many times to eliminate lucky guesses.
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3 Epistemic Logic
As mentioned in the introduction, the modeling tool used in the present thesis dou-
bles as an epistemological framework: it both serves as a mathematical modeling
tool, and as an epistemological theory. In this chapter, both these elements of
epistemic logic will be presented. In the first section, the system S5 for proposi-
tional epistemic logic is introduced. The general conception of knowledge of the S5
framework is introduced alongside the definitions of the logical apparatus: syntax,
semantics and a Hilbert-style axiom system. In the second section, syntax, seman-
tics and axiom system for first-order epistemic logic with constant domain semantics
and non-rigid terms is presented. The main discussion in this section relates to the
interpretation of predicates and constants, and agents’ view of these. The purpose of
the chapter is hence to introduce both the logical framework and its epistemological
underpinnings, which forms the basis for the later modeling.
To accommodate a less technically orientated audience, the writing style, defi-

nitions and notation used in the present chapter is less rigid then the one used in
the following chapter that presents the completeness proof mentioned in the intro-
duction. The use of parentheses to indicate scope is kept to a minimum to aid
readability for the less formally orientated readers, and important, but technical,
definitions are not presented. If the reader finds that anything in the present lacks
clarity, all relevant definitions etc. can be found in the next chapter.

3.1 Propositional Epistemic Logic
There are many different systems of epistemic logic, each with its own axiomatic
base and (possibly) corresponding set of suitable models. The most widespread
system is S5. The system is a classic modal system often used to model possibility
and necessity. It has also been given an epistemic interpretation, which (Fagin
et al., 1995) was influential in making a mainstream modeling tool. The system can
further be given a clear philosophical interpretation in both the propositional and
the first-order case, and thereby serves as a proper epistemological theory. This is
the interpretation of epistemic logic presented here, which to a high degree stems
from the works of Jaakko Hintikka.1

1It is interesting to note that in the first book length piece on epistemic logic, namely Hintikka’s
1962 Knowledge and Belief: An Introduction to the Logic of the Two Notions, Hintikka rejects
one of the axioms of S5, namely 5, the axiom of negative introspection (see below) on intuitive
grounds.
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The fundamental idea behind the S5 notion of knowledge is a negative one based
on possibility elimination resulting in a partitioning of such possibilities. Stated sim-
plistically, it is knowledge gained through the process of elimination. The intuitive
idea is that agents try to decide what is the actual world they are in – that is, what
is true about the world they are in – by means of eliminating possible worlds using
their available information. Eliminating worlds from being the actual one results
in a partitioning of all possibilities into those that are consistent with current in-
formation, and those that are not. An agent is said to know a proposition if the
proposition is true in all the possibilities consistent with the information. This may
be seen as a negative view on knowledge: an agent knows proposition p, only in the
case where the agent can eliminate all non-p possibilities. Hence, to gain knowledge
of the true, the agent should eliminate the false.
Apart from this view of knowledge, no further definition of the term ‘knowledge’

is identified by the epistemic logical framework, cf. (Hendricks, 2006).
As the epistemological interpretation of the system is most clearly reflected by

the associated model theory, this will be introduced first.

3.1.1 Epistemic Models and their Philosophical Interpretation2

For both model theory and syntax for a modal logic3, two elements are fundamental.
First, a countable set of proposition symbols:

Prop = {p1, p2, ...}
Each proposition symbol is understood as a shorthand for a non-compound propo-
sition. For example, the proposition symbol p1 could be a shorthand for the propo-
sition ‘The Earth is round’, and p2 stand for ‘The Moon is made of cheese’. Hence,
each proposition symbol is a shorthand for a true or false statements about some
factual relationship.
The second fundamental element is a finite set of agents:

I = {1, 2, ..., n}
An agent is used as a generic term for any entity capable of action. This may be
a human being, an animal, a computer program or the timer on an oven. In the
following, action is understood broadly, and includes such static, cognitive actions as
having knowledge or considering something possible. Agents are typically rational,
idealized, cognitive agents.
An epistemic model based on such a set of propositions and a set of agents consists

of three elements. The first is a countable set of possible worlds,
W = {w1, w2, ...}

2The following exposition of the semantics of propositional epistemic logic is largely based on
(Fagin et al., 1995) and various textbooks on modal logic in general, see e.g. (Blackburn et al.,
2001; Chellas, 1980).

3A strict definition of a logic is presented in the next chapter. Stated loosely, a logic is a set of
formulas closed under a set of inference rules.
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Of these, one is called the actual world. The interpretation is that the actual world
reflects the state of affairs as they truly are. The remaining worlds are considered
alternatives to the actual world. This means that they are logically possible other
ways in which the actual world could have been. In the epistemic interpretation,
these are called epistemic alternatives. Each possible world can be taken to be a
complete description of all factual matters in some metaphysical variant of the real
world, or they may be taken to be descriptions of some idealized situation which
one wishes to analyze, including only aspects relevant for the modeling process.
In the present work, the latter, pragmatic approach to possible worlds is taken,
assuming no metaphysical commitment as to their existence. The terms ‘state’,
‘scenario’, ‘situation’ or ‘situation description’ may hence be more suitable than
‘possible world’, and these will all be used interchangeably throughout.
The second element of an epistemic model is an interpretation, which is a function

I : W −→ P (Prop)

that assigns to each possible world an element of the power set of the set of propo-
sitions. The intuitive idea is that the interpretation assigns to each world the set of
propositions which are true at that world.
The third and final element of a epistemic model is a set of indistinguishability

relations4:
(∼i)i∈I = {∼1,∼2, ...,∼n}

There is exactly one indistinguishability relation for each agent i, and this is the
relation ∼i. Each is a binary relation between worlds, that is for each i ∈ I,

∼i⊆ W ×W

Each is assumed to be an equivalence relation, which means that it partitions the
set of possible worlds into partition cells, often denoted information cells in the
epistemic interpretation. Within each cell, all worlds are connected to each other,
but to no worlds outside the cell. Two partitions are illustrated in Figure 3.1.1.
Each information cell consists of a set of worlds, and the interpretation is, that the

agent in question cannot tell these worlds apart, i.e. they are indistinguishable to the
agent. Hence, if two worlds w and w′ are related by agent i’s indistinguishability
relation, that is, if (w,w′) ∈∼i, or using a more pleasant notation, if w ∼i w′,
these worlds are said to be indistinguishable to i, or we say that w′ is an epistemic
alternative to w for i. That is, based on the information available to i at w, i cannot
tell whether the actual situation is w or w′.
To give an example: assume agents i and j are away on a weekend trip, and i

knows of j that a) he always wears exactly one pair of same colored socks, and that
b) he brought one red pair and one black pair. This is all the information available

4The indistinguishability relation is often, in modal logic, referred to as the accessibility relation.
The former term is chosen here due to the specific epistemic application and role of the relation
in mind.

29



Chapter 3 Epistemic Logic
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Figure 3.1.1: Two partitions of a set with 6 elements. On the left side, the partition consists
of three cells, marked with dotted lines. In each cell, all elements are connected to each other,
but to no elements outside the cell. On the right side, the partition consists of four cells.

Wet hair
Black socks

Wet hair
Red socks

Dry hair
Black socks

Dry hair
Red socks

w  1 w  2

w  3 w  4

Figure 3.1.2: The indistinguishability relation is drawn with arrows. There are the two infor-
mation cells: {w1, w2} and {w3, w4}. In w1, the agent knows ‘Wet hair’, but does not know
‘Black socks’ or ‘Red socks’.

to i regarding j’s garments when j exits the bathroom dressed on Saturday morning.
In this case, i will know certain things; what color shirt, pants and shoes j is wearing,
for this is plainly visible; whether j’s hair is wet or not, as i will be able to tell these
cases from each other – but i will not know whether j is wearing the red or the black
socks, for this fact will be concealed (by shoes and pants). Thus, i is incapable of
telling the scenario where j is wearing the red socks from the scenario where j is
wearing the black socks. i cannot distinguish between the two based on the available
information, and hence they are related by i’s indistinguishability relation. This is
illustrated in Figure 3.1.2.
This indistinguishability analysis of the relation between worlds is made possible

by the semantics of S5 logics, namely that the relation must be an equivalence
relation. An equivalence relation on a set divides the whole set into disjoint (not
overlapping) subsets – the information cells of Figure 3.1.1.5
Another example of an equivalence relation is the relation ‘same height as’. If

applied to some population, the population will be partitioned into subsets; the set
of all those of height 100, the set of all those of height 110, etc. If two from the
population are the same height, they will be in the same subset, but if they are
not, then they will not. In the same way the set of scenarios is partitioned into the

5I.e., an equivalence relation induces a partition on the given set.
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aforementioned information cells, relative to each agent.
Thus, in the weekend trip example, there may be one set of worlds where j has

wet hair, all of which are related by i’s indistinguishability relation with respect to
the fact of the color of j’s socks, and another set of worlds where j has dry hair, as
illustrated in Figure 3.1.2. If one world belongs to the first set, and another world
belongs to the second set, then i will be able to tell them apart by virtue of the fact
that i can tell whether j has wet or dry hair. They are thus not connected by i’s
indistinguishability relation. On the other hand, if two worlds belong to the same
cell of the partition, the agent will not be able to tell them apart due to lack of
information.
In the formal models, worlds are related by an indistinguishability relation for

some agent as a matter of courtesy from the modeler’s side; for instance, if the
epistemic workings of an agent unable to tell day from night or wet hair from dry is
to be modeled, the appropriate worlds may simply be stipulated as being related.
A formal definition of epistemic models is presented in section section 3.1.4 below.

3.1.2 Propositional Syntax
Propositional epistemic logics are propositional logics augmented with one or more
modal operators for knowledge, or knowledge operators. For each i from the set of
agents I = {1, 2, ..., n}, Ki will be a knowledge operator. Given these and a set
of propositions Prop = {p1, p2, ...}, the set of well-formed formulas can be defined
as follows: where pk ∈ Prop, Ki is a knowledge operator and ϕ is a well-formed
formula, the following will be well-formed formulas:

pk | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | Kiϕ.

A knowledge operator Ki is read ‘i knows that...’. It can hence be expressed that,
for instance, ‘i knows that ϕ and ψ’ by Ki (ϕ ∧ ψ). A dual operator of Ki may also
be defined as a shorthand for ¬Ki¬, which will be written Pi – i.e. for some formula
ϕ, Piϕ is short for ¬Ki¬ϕ.6 This dual operator is read ‘it’s possible, for all i knows,
that...’ for reasons that will become apparent shortly.7 In the following, both Kis
and Pis will be referred to as knowledge operators.
In case of the example above, letting p1 read ‘j is wearing red socks’ and p2 read

‘j is wearing black socks’, it would follow that agent i knows that one or the other of
the two propositions is true. Hence, the model should make the formula Ki(p1 ∨ p2)
true. Agent i knows neither that it is the one or the other, so the model should also
make ¬Kip1 and ¬Kip2 true. By the definition of the dual operator, from the first
of these cases it follows that Pi¬p1, i.e. it is possible, for all that i knows, that the
friend is not wearing red socks.

6Of course, for meta-theoretical reasons, the binary connectives could be defined from either
one of the binary connectives and the negation. This is the approach taken when proving
completeness in chapter 4.

7Alternatively, the operator can be read ‘ϕ is consistent with agent i’s information’, cf. (van
Benthem et al., 2011).
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3.1.3 Axioms and the present conception of knowledge
In the present section, the axioms of S5 will be presented and justified as fair prin-
ciples of knowledge for idealized, rational agents and this notion of knowledge will
further be discussed with respect to its areas of application.
The normal modal logic S5 includes the axioms of propositional logic and the

following four axiom schemes and two rules of inference, where ϕ may be any well-
formed formula and Ki is any knowledge operator as specified above:

K: Ki (ϕ→ ψ)→ (Kiϕ→ Kiψ)
T: Kiϕ→ ϕ
4: Kiϕ→ KiKiϕ
5: ¬Kiϕ→ Ki¬Kiϕ

The rules of inference are Modus Ponens: If ϕ and (ϕ→ ψ) are theorems, then
ψ is a theorem, and Knowledge Generalization: If ϕ is a theorem, then Kiϕ is a
theorem.8
The logic S59 is defined as the smallest set containing all propositional tautolo-

gies and the above axioms, and which is closed under the stated inference rules.
This system is sound and complete with respect to the models and semantics of
section 3.1.4 below, cf. (Chellas, 1980).
Depending on the way the two dual operators are defined, a further axiom is

required for soundness and completeness, namely

Dual: Kiϕ↔ ¬Pi¬ϕ

Given the definition of the Pi operator above, this axiom is not required, but is
valid on all the specified models. It is often included as an axiom, and it captures
an important aspect of knowledge as understood in the S5 epistemic framework, as
will be discussed below.
Discussion of each of the axioms as principles of knowledge is warranted. The first

axiom, K, also known as Distribution or the axiom of deductive cogency (Hendricks,
2006, p.84), is in one crucial aspect both the most fundamental, but also the most
problematic, of the S5 axioms. The axiom yields the property that any agent knows
the logical consequences of their knowledge. It may be argued that this is a crucial
property of strong rationality. Unfortunately, the agents comes to know all the
logical consequences of their knowledge, and are hence logical omniscient. As the
axioms of propositional logic are included in S5, then by Knowledge Generalization
(KG), Modus Ponens (MP) and K, the agents in question will know all the theorems
of the propositional calculus. As this set of theorems is infinite, even just adding
KG and K to the propositional calculus results in a system far too strong to model
human cognition.

8This last rule of inference is also often referred to as Necessitation.
9or S5n if one wishes to include reference to the amount of agents. The subscript will be omitted
where it will not cause confusion.
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For this reason the knowledge operator was originally given another reading in the
first book-length piece on the subject, namely Jaakko Hintikka’s 1962 Knowledge and
Belief: An Introduction to the Logic of the Two Notions. Here, Hintikka proposes
reading Kap as

It follows from what a knows that p (Hintikka, 1962, p.31)

after having discussed problems regarding human agents’ knowledge of the conse-
quences of their knowledge and consistency reinterpreted as defensibility, cf. (ibid.,
pp.25-31). According to this epistemological story, the theorems of epistemic logic
are to be understood as rationally indefensible, where

[i]ndefensibility is fleshed out as the agent’s epistemic laziness, sloppiness
or perhaps cognitive incapacity to realize the consequences of what he
in fact knows (Hendricks, 2006, p.89)

There are several ways of dealing with the problems of logical omniscience, cf.
(Meyer, 2001), but here neither will be invoked, and it is noted that the agents
are thus treated as highly idealized with respect to their epistemic abilities. The
problem will be discussed in relation to model validation in chapter 5.
The interpretation of the validity of Dual rests on the entire viewpoint of knowl-

edge as understood within epistemic logic. As stated earlier and as will be made
explicit in the formal semantics, knowledge in the epistemic logical framework is a
matter of possibility elimination. If an agent can eliminate all situations in which
ϕ is the case, then the agent is said to know ¬ϕ. Further, if the agent is unable
to eliminate one or more situations in which ϕ is the case, then, for all the agent
knows, ϕ may be the case, or the agent does not know ϕ. Thus, if an agent knows ϕ,
then there are no possibilities left to consider where ¬ϕ is the case, and hence it is
not possible, for all the agent knows, that ¬ϕ is actually the case – which is exactly
the wisdom contained in Dual.
The axiom T, often called the axiom of truth (Hendricks, 2006, p.85), reflects

the commonly accepted requirement of knowledge as also seen in the justified true
belief -definition of the concept, cf. (Sosa, 1992, Tripartite definition of knowledge),
that no matter what, what is known must be true. Put differently, T encodes the
requirement that knowledge is infallible. As before, this axiom perhaps requires too
much of the agents if knowledge should be less than ideal: before some proposition
p can be said to be known, all possibilities of error must be eliminated, leaving only
situations in which p is actually the case. Thus, unless certain assumptions are made
with respect to the space of possible worlds allowed in the models, the possibility of
knowledge is quickly ruled out by Cartesian skepticism. Such skepticism can have
the effect that no formulas Kiϕ will be true for non-trivial ϕ, as it may be impossible
to eliminate certain worlds: in particular, worlds in which one is being severely fooled
by intuitions regarding daemons and computers. For whether such states are in fact
the case may be globally under-determined by any available evidence ex hypothi, cf.
(Hendricks, 2006).
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Of the two final axioms, 4 and 5, only 5 is necessary to include in the axiomatic
base, as 4 can be proven by means of 5 and T. 4 is included as it embodies an
important aspect of rational agency, namely that of positive introspection. That the
agents dealt with in the present are positively introspective means that if an agent
knows something, then he knows that he knows it (which is again known, etc.).
This feature of the epistemic abilities of the agents involved is strikingly implau-

sible when compared to an everyday use of the verb ‘to know’ – as an example, if
upon receiving the answer to a question one replies ‘Ah, I knew that!’, then this
agent has not been epistemologically rational in the sense of epistemic logic, for this
answer shows that there was no reason to ask the question in the first place; if the
agent knew the answer before he received it, then he also knew that he knew it, and
thus would have no need to seek the information in the first place.
An argument in favor of 4 as a reasonable principle of the elimination conception

of knowledge is the following. Assume that agent i is in a situation in which he can
eliminate all possibilities of a certain event, say ¬p. Then he will know p, i.e. Kip.
In this case, i will also have eliminated all possibilities in which he does not know
p, i.e. all situations in which ¬Kip holds. This is so as ¬Kip holds only if there
is some non-p world that has not been eliminated. But such have been eliminated
by assumption. So, i can eliminate the possibility that he does not know p, and all
that is left in situations where Kip is the case. Hence, this is known by i, i.e. KiKip
holds.
The final axiom of S5, namely 5, is also an introspection property, but this time of

negative introspection. That agents are assumed to have this ability is a strong as-
sumption, letting the agents know their own ignorance. This requires a full overview
of all the possibilities given some state of affairs, and certainty as to which can be
eliminated on the basis of current information. With respect to human knowledge of
models incorporating enough facts, this is indeed implausible to assume, but when
regarding certain less complicated scenarios, the principle can be seen as fair.
This, for example, is true in many card game situations where players know of

their own uncertainty regarding a card deal. To exemplify 5, recall the weekend trip
example above. That i knows that j has brought only two pairs of socks limits the
amount of possibilities, namely to two. In either of these two situations, there will be
uncertainty as to what color socks are being worn and all situations in which there
is no uncertainty can be eliminated (a situation with no uncertainty with respect
to the socks color would, for instance, be one in which j was wearing no pants and
shoes, but such scenarios can be eliminated by appeal to current information, i.e.
the information that the friend steps out of the bathroom fully dressed). As all
situations in which i knows the color of the socks are eliminated, only situations in
which this fact is not known are left. And that the socks color is not known in all
these states in turn makes it the case that this fact is known, that is, it is known
that it is not known, what color the socks are.
In sum, S5 can hence be seen as the logic of knowledge for (ideal) agents possessing

a complete overview of the different possibilities available.
As noted, the notion of knowledge employed in standard epistemic logic is not
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based on any particular definition of knowledge, such as justified, true belief. That
knowledge must imply truth is assumed in the S5 system due to the axiom T,
not due to an interpretation of the knowledge operators. This in turn means that
knowledge does not imply that any kind of justification is present for the propositions
known, and nor does standard epistemic logic include any machinery to deal with
information gathering or learning. This, in turn, means that there is no focus on
the methods used to acquire information in the first place. Especially with respect
to direct object constructions and wh-knowledge10, this can make the reading of
certain formulas unintuitive, as will be commented on further below.

3.1.4 Truth Conditions

So far, semantic structures in terms of worlds and indistinguishably relations, etc.,
and a language for talking about these structures have been introduced. In order
to assign meaning to that language, the topic now turns to truth conditions, which
serve exactly this role.
As mentioned earlier, for a logic based on a set of propositions Prop and set of

agents I, any models have three basic constituents; a set W of worlds, a set of
indistinguishability relations (∼i)i∈I and an interpretation I : W −→ P(Prop). A
model may hence be defined as a triple

M = 〈W, (∼i)i∈I , I〉

Though models allow for the determination of the truth or falsehood of some
formulas,11 it will typically be interesting to evaluate formulas at a specific point in
a model, for example the actual world. For this, the notion of a pointed model is
required.
Where M is a model and w ∈ W , a pointed model is any pair (M,w). In the

following, the parentheses will be omitted.
Based on the definition of a pointed model, the truth conditions for propositional

epistemic logic can now be given. Strictly speaking, truth12 is defined as a relation
between (pointed) models and formulas. The relation is denoted ‘|=’, and the ex-
pression ‘M,w |= ϕ’ is read ‘ϕ is true at world w in model M ’. The truth relation
is defined by the following iff clauses:

10Knowing who, what, where, etc., someone is, for example.
11In the same way frames allow for the determination of the validity of certain formulas. For

completeness results, frames, defined as pairs F = 〈W, (∼i)i∈I〉, are the crucial part of the
models as axioms characterize properties of the indistinguishability relations, cf. (Blackburn
et al., 2001). This point will be returned to in the following chapter.

12Also often denoted satisfaction, cf. e.g. (Blackburn et al., 2001). Where a formula is true, it
may also be said that it is satisfied or that it holds. These terms will be use interchangeably.
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Figure 3.1.3: An example of a model with W = {w1, w2, w3}. The set of formulas in I(wk)
is drawn in the world’s box. For this model it is the case that M,w1 |= p ∧ q, M,w2 |= ¬q
and M,w3 |= p → r. Agent i’s indistinguishability relation is illustrated by a line connecting
worlds. Lines to the same world has been ignored. Hence, M,w1 |= Kip and M,w1 |= Ki(p∨q).
Further, M,w1 |= ¬Kiq, but M,w1 |= Piq (and much more).

M,w |= p iff p ∈ I (w)
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ (or both)
M,w |= ϕ→ ψ iff not M,w |= ϕ or M,w |= ψ (or both)
M,w |= ϕ↔ ψ iff M,w |= ϕ→ ψ and M,w |= ψ → ϕ
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= Kiϕ iff for all w′ such that w ∼i w′, M,w′ |= ϕ
M,w |= Piϕ iff there exists a w′ such that w ∼i w′, and

M,w′ |= ϕ

In this definition, the truth conditions for the connectives are exactly like those
known from propositional logic. The truth conditions for formulas involving knowl-
edge operators reflect their modal characteristics, namely that having knowledge not
only depends on the current situation, but on others as well, as has been expounded
above.
For Kiϕ to be true, agent i must be able to eliminate as possible alternatives to

the actual situation all situations in which ¬ϕ holds, thus leaving only situation
where ϕ holds as indistinguishable to him from w.
On the other hand, Piϕ will be true in case agent i is not able to eliminate all

situations in which ϕ holds, thus leaving at least one state as indistinguishable to
him from w on the basis of his current information. An example of a model and
some formulas true in it is illustrated in Figure 3.1.3.
As mentioned above, the indistinguishability relations are equivalence relations.

With the semantics defined as here, this results in the axiomatic system S5 being
sound and complete with respect to the set of all models as defined. That is, a
formula can be syntactically proven in S5 if, and only if, it is satisfied in all worlds
of all epistemic models, cf. (Fagin et al., 1995).
That the indistinguishability relation is an equivalence relation amounts to it

being reflexive, transitive and symmetric, or, equivalently, it being reflexive and
euclidean. The axiom T characterizes reflexivity, 4 transitivity and 5 euclideaness,
cf. (Blackburn et al., 2001). As reflexivity and euclideaness implies transitivity, this
is an easy way of seeing that 4 is implied by T and 5, as mentioned above.
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3.2 Quantified Epistemic Logic
Though propositional epistemic logic allows modeling of a wide range of different
epistemic scenarios, the basic ontology is still very limited. Only unstructured propo-
sitions are available at the most basic level. This restricts the expressibility in that
relations between objects cannot be expressed, and neither can relations between
basic propositions based on their internal constitution. Hence, to model knowledge
of objects and their properties in a way that preserves structured information, a
stronger language is required. To gain expressive power, a more complex syntax as
well as semantics is required. For this purpose, a first-order language able to ex-
press properties of more structured worlds is introduced. Each world will consist of
a domain of individuals and an ascription of properties to these individuals. These
worlds will then constitute the state space of epistemic models.
The following exposition of quantified epistemic logic/first-order modal logic is

based on (Fagin et al., 1995), (Fitting and Mendelsohn, 1999) and (Hughes and
Cresswell, 1996), but includes differences in notation and style of definitions.

3.2.1 First-Order Syntax
Instead of the set Prop of unstructured propositions utilized in propositional epis-
temic logic to define the most basic constituents, the atomic formulas of the language
LQEL of first-order quantified epistemic logic (QEL) are constructed using four sets
of constituents:

1. A set of constant symbols, CON = {a, b, c, ...}

2. A set of variables, V AR = {x, y, z, ...}

3. A set of function symbols, FUN = {f, g, h, ...}

4. A set of relation symbols, REL = {P,R,Q, ...}

Both the function symbols and relation symbols13 may be n-ary,14 taking n argu-
ments from the set of terms TER. The set TER consists of all constant symbols, all
variables and where f is an n-ary function symbol and t1, ..., tn are terms, f (t1, ..., tn)
is a term.
The set of atomic formulas is defined as follows: where R is an n-ary relation

symbol and t1, ..., tn are terms, R (t1, ..., tn) is an atomic formula. Where ‘=’ is the
identity sign and t1, t2 are terms, t1 = t2 is an atomic formula.
The atomic formulas play the same role as the propositions did in propositional

epistemic logic, but contain more structure and therefore encode more information.
To give an example, where in the propositional case ‘a loves b’ would be expressed
13In the present, the terms ‘predicate’ and ‘relation’ will be used interchangeably, though relations

will in general be assumed to take two or more arguments, but predicates are not taken to be
necessarily monadic.

14The set of n-ary relation/function symbols will be denoted RELn and FUNn, respectively.
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by an unstructured proposition p, it may now be expressed by L (a, b), where the
binary relation symbol L is interpreted as the relation of ‘loving’.
The set of well-formed formulas is defined as follows: any atomic formula is a

well-formed formula, and where ϕ and ψ are well-formed formulas, the following are
well-formed formulas:

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ↔ ψ | ∀xϕ | Kiϕ,

where i ∈ I, the set of agents, and ∀x is the universal quantifier. The dual of the
knowledge operator is defined as in the propositional case, and in the same vein, the
dual of ∀x, namely ¬∀x¬, is defined as ∃x, the existential quantifier. Notions of free
and bound variables and sentences are as usual, and can be found in the ensuing
chapter.

3.2.2 First-Order Models and Truth Conditions
As mentioned, in the first-order (quantified) case of epistemic logic, worlds are in-
habited not by propositions, but by objects and their properties. As a result, the
models need to be augmented with a domain of individuals, given by a countable
set

Dom = {d1, d2, ...}

A constant domain for all worlds is chosen, as will be discussed in section 3.2.4
below.
Define the class CQEL of quantified epistemic models as the set of models M , where

M is a quadruple
M = 〈W, (∼i)i∈I , Dom, I〉

such that W and (∼i)i∈I are as in the propositional case and I is a first-order
interpretation such that:

• Relative to each world, I assigns to each n-ary relation symbol a set of n-tuples
from the domain, i.e.

I : RELn ×W −→ Domn

• Relative to each world, I assigns to each n-ary function symbol an n-ary
function on the domain, i.e.

I : FUNn ×W −→ DomDomn

– Where (t1, ..., tn, t′) ∈ I (f, w), it is said that I (f(t1, ..., tn), w) = I (t′, w).

• Relative to each world, I assigns to each constant an element from the domain,
i.e.

I : CON ×W −→ Dom
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Figure 3.2.1: QEL model with two worlds indistinguishable to i. The domain includes three
objects, d1, d2 and d3. A monodic predicate P , and a binary relation R, are represented.
Amongst others, the following properties hold: M,w1 |=v (a = b)∧¬P (b)∧R(c, a) andM,w2 |=v

(a 6= b) ∧ P (b) ∧R(a, c). Further, M,w1 |=v Ki(P (c) ∧R(c, a)) ∧ Pi(a 6= b).

Finally, the variables are assigned values world independently by a valuation, v,
which is a function

v : V AR −→ Dom,

assigning to each variable an element of the domain. A valuation v′ which assigns
to all variables except possibly x the same values as v will be call an x-variant of v.
Based on these definitions, the truth conditions may now be defined. In the first-

order case, and extra parameter is introduced, namely the valuation. As a result,
the satisfaction relation is indexed by this. ‘M,w |=v ϕ’ is read ‘in model M at
world w, under valuation v, ϕ is true’. In the below table, some definitions for the
basic connectives has been left out, as these are as for the propositional case:

M,w |=v P (t1, t2, ..., tn) iff (d1, d2, ..., dn) ∈ I (w,P )
M,w |=v (t1 = t2) iff d1 = d2

where di =
{
v (ti) if τi ∈ V AR
I (w, ti) if τi ∈ CON

for i ∈ {1, 2, ..., n}
M,w |=v ϕ ∧ ψ iff M,w |=v ϕ and M,w |=v ψ
M,w |=v ¬ϕ iff not M,w |=v ϕ
M,w |=v Kiϕ iff for all w′ such that w ∼i w′, M,w′ |=v ϕ
M,w |=v Piϕ iff there exists a w′ such that w ∼i w′, and

M,w′ |=v ϕ
M,w |=v ∀xϕ (x) iff for all x-variants v′ of v, M,w |=v′ ϕ (x)
M,w |=v ∃xϕ (x) iff for some x-variant v′ of v, M,w |=v′ ϕ (x)

The truth values of sentences depend only on models, not on specific valuations,
and hence each sentence will in any model have a definite truth value.
An example of a quantified epistemic model is illustrated in Figure 3.2.1.
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3.2.3 Philosophical Interpretations: Classes, Concepts and more
Indistinguishability

In the propositional case, the most basic entity about which the agents could be
uncertain are the unstructured propositions of Prop. The situation gains complexity
when these propositions gain internal structure. Where in the propositional case, the
truth or falsity of a proposition at a given world in some model only depended upon
what subset of Prop was assigned to that world by the interpretation, the truth of
the formulas in the quantified case ranges from at least including an interpretation
of a constant and a monadic predicate to more complex cases where interpretations
of n constants and a m-adic predicate and m− n existential or universal judgments
are required to determine the truth value of the given formula. All these factors can
individually be subject to a kind of uncertainty not present in the propositional case.
To get an idea of the troubles the agents go trough, the philosophical interpretation
of the mentioned constituents of quantified epistemic logic will be presented in the
following section.
It should be noted that the exposition of quantified epistemic logic presented here

is not an industrial standard, as opposed to the propositional case. The reason for
this is that no general standard exists. The formal system is well-known, and pre-
sented in (Fagin et al., 1995), but the interpretation presented there is not detailed
enough to yield a philosophical basis. The current interpretation is partly based on
various texts by Hintikka, e.g. (1962; 1969; 1994; 2007), but no blame should fall
on Hintikka if the reader should find the current presentation incoherent.
The system differs in important aspects from the system presented in (Hintikka,

1962), in it having constant domains consisting of the same individuals.15 Constant
domains and the utilized semantics makes cross-identification across epistemic alter-
natives easy, as two constants (seen as objects by the agents) are the same if their
interpretation are the same object in the domain. This is in contrast to (Carlson,
1988), where objects are individuated by individuating functions. To exemplify, the
variable valuation of (Carlson, 1988) assigns to each variable a partial function from
worlds to the domain of each world with certain requirements.
The constants and predicates of quantified epistemic logic need two distinct inter-

pretations depending on whether or not they occur within the scope of knowledge
operators. When predicates and constants occurs outside of the scope of operators,
these are interpreted as denoting sets of objects (or single objects, in the case of
constants), marking some (i.e. the modelers) classification of the objects of the do-
main, relative to the given world. Thus, outside the scope of operators, predicates
denote properties of the objects at the world of evaluation, the properties that the
modeler sees fit to be denoted relative to the modeling task at hand.
When a predicate (or constant) occurs within the scope of an operator, it rep-

resents the agent’s concept16 (or individual concept in the case of constants) of the
15The system presented by Hintikka has a completely different semantics, utilizing his model sets.
16Or, perhaps better, the agents conception of the given class, where this conception would give

rise to the agent’s concept of the class.
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property (or object) that the predicate (or constant) denotes outside the scope of the
operator, relative to the given world. Before moving on to the important subtleties
added by quantifiers, a few notes about these first two aspects are in place.

Predicates and constants outside the scope of operators In regard to the first,
the assignment of properties to the objects of the domain relative to a given world,
this assignment is given by the modeler when defining the interpretation of the pred-
icates. Whether this assignment is meant to mirror either objective properties, i.e.
as describing natural kinds truly existing in the real world, or as socially constructed
properties (or any mixture of the two), makes no difference in the formal process.
Hence any application of formal models on real life situations require arguments for
the proposed assignment holding true of the real scenario.
Here, no one, specific purpose for the models invoked are assumed: they will

be used to model semantic competence, but what objects and properties that are
relevant will depend on a specific application. As pointed out in (Sokal, 1977)
regarding classifications, these tend to be teleological: for some given purpose, some
classification may be more productive than others. If ones purpose is the “search
for immanent structure in reality” (ibid., p.189), one may aim to supply a taxonomy
isomorphic with the given natural system. If one on the other hand aims to analyze
a card game, it may be the more pragmatic choice to supply classes such as ‘Hearts’,
‘Spades’ and ‘Aces’, etc. The same goes for the present modeling framework: if one
wishes to analyze a given card game, it will typically not make any sense to model
properties of the players shoes, whereas the color of the individual cards may be
quite interesting.
In the same spirit, constants occurring outside the scope of operators denote

objects. Therefore constants outside the scope of operators will be used to denote
the real-world objects in Marconi’s SLC.

Binarity One embedded restriction in the current system is its binarity: given the
truth conditions stated above, each element either falls into a given class or it does
not. This is embedded in the validity of Tertium non datur17,

P (x) ∨ ¬P (x)

stating that for any x either x is P or it is not. In particular, this means that
certain structures become problematic to model, namely those the classes of which
are thought to grade into one another in a continuous fashion. Here, two cases in
point may be Sorites’s “pile”18 and the socially constructed concept of ‘species’: a
17Tertium non datur is also known as the Law of the Excluded Middle, or Principle of the Excluded

Middle.
18Sorites’s “pile” is the main character of the Sorites Paradox: imagine a pile of sand. If one grain

of sand is removed, does the remained still constitute a pile? Yes. As the pile was arbitrary,
removing one grain of sand from any pile of sand results in a pile of sand. Iterating the process,
the remaining pile of sand includes only one grain, which is not a pile. Contradiction. The
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common criterion (often seen as the defining criterion) for determining whether two
animals are of the same species, is whether their offspring is fertile. Though this
may seem like a clear cut criterion it is, as Sorites’s “pile”, vague: for whether two
(fertile) animals produce fertile offspring is a matter of chance, as they can each
belong to the outer rim of the given species, and get fertile offspring at one point,
but not at another, depending on the exact combination of spermatozoon and oocyte
– cf. (Barton et al., 2007, p. 620-622).
What must be noted here is that though it may seem safe to assume non-vague

classes of certain objects such as American citizens, elementary particles and red/black
socks, in certain other, intuitively clear, cases, a clear cut non-vague classification
may be hard if not impossible to obtain – even given expert knowledge of the subject.

Inside the scope of operators When it comes to predicates and constants occur-
ring within the scope of operators, these are not to be interpreted as factual in the
same way as when occurring outside such scope. Instead, predicates and constants
inside the scope of operators are interpreted as representing the agent in question’s
subjective concept/conception of the given properties and objects.19 As such, pred-
icates and constants inside the scope of operators plays the role of the items in the
semantic lexicon of Marconi. The details of this is explained in section 5.3.1.
To get a grip of the current use of such concepts, recall that when a formula, say

P (a), occurs within the scope of a knowledge operator, like in KiP (a), the truth of
the latter requires that the former is true in all worlds indistinguishable for agent
i. Thus, in all the relevant worlds w′, it must be the case that I (a, w′) ∈ I (P,w′).
But notice, for two worlds, w and w′, both the interpretation of a and that of P
may differ from one world to the other.
In the case where for instance the interpretations of P differ between w and w′,

then if w and w′ are indistinguishable for agent i, then the two objectively different
properties I (P,w) and I (P,w′) will also be indistinguishable for i. Hence, these
two properties, indistinguishable to the agent, will come under one heading, P , to
the agent, and it is this which is meant by a concept or the agents conception of
the property. For example, when philosopher Hilary Putnam famously cannot tell
elms from beeches, cf. (Putnam, 1975), his concepts of each of the two objectively
different classes is the same.
The same applies to constants and individual concepts: if the interpretation of

some constant a differs across the worlds indistinguishable to some agent, the agent
has a concept of a, but this concept is ambiguous. Perhaps the agent cannot tell
the apple on the table from the pear on the table or cannot distinguish between the
Chanel purse and the Gucci bag – it’s all the same to him.
These cases of ambiguous (individual) concepts are ones in which multiple proper-

Sorites Paradox has been used to argue for the vagueness of the term pile: the term is vague
as no clear boundary can be decided between what constitutes a pile, and what does not.

19When occurring within the scope of a knowledge operator, these concepts will retain some
factuality, though, due to the reflexivity of the indistinguishability relation.
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Figure 3.2.2: Two boxes, one of which contains a cat. The cat does not make any sounds,
as otherwise one could tell. The white box can be individuated, so can the grey. The box
containing the cat cannot. Each would be denoted by constants.

ties (objects) indistinguishable to the agent are thought of as being lumped together
under the same mental heading. This does not imply that the agent will perceive
for example the two bags as one object. It simply means that they are indistin-
guishable by the headings Gucci and Chanel. They may still be distinguishable by
other headings, like color, position, shape or price. A similar example is illustrated
in Figure 3.2.2.
The agent may also be unknowing in a reverse sense, namely by a single thing

under two to the agent distinct headings. This may for instance be the case when
an agent does not know that the ace of spades and the card marked with an X on
the back is the same, or when the agent’s concept of ‘renates’ differs from that of
‘cordates’.

Quantifiers As with other formulas, formulas involving quantifiers may occur wholly
outside the scope of operators, wholly inside the scope of operators, or, which is a
feature that yield a truly novel expressibility of quantified epistemic logic over propo-
sitional logic, the scope of quantifiers and operators may be mixed.
Given the above interpretations of formulas not involving quantifiers, the first

two cases are rather straightforward. In the case where a quantified formula occur
wholly outside the scope of operators (that is, the quantifier occurs outside the scope
of operators, and no bound variables occur inside the scope of operators), the role
of the formula is that of a normal first-order logic formula. It expresses properties
of existence and universality of the objects of the domain and its truth value only
depend on the interpretation of predicates and constants in the world of evaluation.
When a quantified formula occur wholly inside the scope of operators, existence or

universality is claimed of the agent’s concepts occurring within the formula. Certain
validities of these types of formulas may occur counter-intuitive, as for instance the
validity of

Ki∃x (x = a)

where a may be any constant. This formula expresses the fact that agent i knows
that his concept of a is not empty – there is an object that is a. The validity of
this formula is due to the fact that the interpretation is defined as a total function
instead of a partial function as is done elsewhere, as for example in free logics, cf.
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(Garson, 2006).
The validity represents that what the agents in the scenarios modeled are to

think about are also assumed to be existing. Hence, if one wished to protest that
the formulas of the given type ought not be valid due to obvious counter-examples,
e.g. that many have a concept of Sherlock Holmes, well-knowing that no such figure
exists, the equally obvious reply would be that an application requiring the modeling
of non-existing objects is not what is being presented.
Where the scope of quantifiers and operators are mixed (i.e. when a quantifier

is outside the scope of an operator, but there is a bound variable inside the scope
of the operator), some very interesting expressibility is gained. Formulas with such
mixed quantifier and operator scope will be of crucial importance in relation to the
definitions of the referential competence types.
What is made possible by such mixed scopes is the construction of formulas per-

taining to attitudes towards specific objects of the actual world. Most notably, it
gives the possibility of constructing wh-knowledge20 with the knowledge operators,
as introduced in (Hintikka, 1962). Here, the reading of

∃xKi (x = a) (3.2.1)
is ‘there exists some object x of which i knows that x is the object a’. Put more
plainly: ‘i knows who a is’, cf. (Hintikka, 1962, 1984, 1994; Hintikka and Sandu,
1995; Fagin et al., 1995). This interpretation is warranted by the workings of the
semantic machinery in that the truth of (3.2.1) ensures that agent i has an unam-
biguous concept of a. This is due to the fact that the existential quantifier binds
the variable x to some object in the domain, say d, at the world of evaluation and
subsequently the knowledge operator states that in all worlds indistinguishable to
i, the value of the interpretation function of a is d. That is, I (a, w′) = d for all
w′ such that w ∼i w′. Said differently, the interpretation of the constant does not
change across the agent’s epistemic alternatives. A de re21 formula thus expresses
of the same object across multiple worlds that it possess some quality – in the case
of (3.2.1) that of being identical to a.
In Figure 3.2.2, the illustration of the two boxes is what the agent would perceive,

and under the assumption that the agent knows that one of the boxes contains a
cat, an epistemic model of this scenario can be illustrated as in Figure 3.2.3. In the
figure, the domain consists of two objects, the left box, d1, and the right box, d2.
In order to speak of the grey box, the white box and the box containing the cat,
denote these by constants g, w and c, respectfully. Hence, the illustration shows that
I(g, w1) = I(g, w2) = d1 and I(w,w1) = I(w,w2) = d2, i.e. that the interpretation
of g and w is constant across the two states. Further, it shows that the interpretation
of c varies: I(c, w1) = d1 and I(c, w2) = d2. Hence, it would hold for agent i that

∃xKi(x = g) ∧ ∃yKi(y = w) ∧ ¬∃zKi(z = c)
20Knowledge of who, what, where, etc., depending on the interpretation of the domain of quan-

tification.
21Statements de re (as ∃xKiϕ (x)) are opposed to statements de dicto (as Ki∃xϕ (x)). The former

are statements about the thing, whereas the latter are statements about the fact.
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Figure 3.2.3: Illustrated model with two worlds. In each, the grey box is denoted g, the white
box w and the box containing the cat, c. The agent can identify the grey and the white boxes,
but not the one containing the cat.

i.e. i is able to identify g, the grey box, w, the white box, but not c, the box
containing the cat.
To give a further example, the formula

∃x(KPutnamTree(x) ∧ Elm(x))

could be used to express that Putnam knows of some object that it is both a tree
and a elm, which would be false. Truthfully, it could be stated that there exists an
elm, and of that elm, Putnam can identify it as a tree:

∃x(Elm(x) ∧KPutnamTree(x))

The type of knowledge towards one particular object as expressed in (3.2.1) is
rather strong, and cannot merely be assumed. In particular, though Ki(a = a) is
a validity, it may not be concluded by existential generalization that ∃xKi (x = a).
This inference is invalid, as will be commented on further in the subsequent section.
Taking de re formulas as (3.2.1) to capture the meaning of the notion on ‘knowing

who’ as used in natural language, as it seems done by Hintikka and Fagin et. al, has
been strongly criticized in (Boer and Lycan, 1986). In order not to misrepresent the
meaning of de re statements, the ‘knows who’ reading of such will not be utilized
as the primary one. Instead, such formulas will be interpreted as expressing an
identificatory ability. Under this interpretation, (3.2.1) states that agent i is able
to identify a particular object as the object of his unambiguous concept a. This
interpretation also occurs in the works of Hintikka, as when he calls formulas such
as (3.2.1) ‘identification statements’ (1969, p. 161). In the terminology of (Hintikka
and Symons, 2007), the interpretation here is subject-centered or perspectival. A
formal definition of individual concepts will be introduced in chapter chapter 5.
Recall that no explicit incorporation of the means of justification are presented

in the formal framework, and that the methods by which information is gained is
not incorporated in the interpretation of the knowledge operators. This can make
the notion of identification seem artificial, as one usually identifies objects by using
one or another method. A friend is seen, the child is heard, something is tasted as
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salt, etc., but seldom anything is identified without using any method for doing so.
Hence, identification statements only express that an agent is able to perform the
given identification, but there is no concern as to why the agent has this ability, nor
how the identification will be performed.

3.2.4 First-Order Axioms and Inference Rules
The axiom system which is sound and complete with respect to the semantics for
quantified epistemic logic presented in the preceding sections, is a proper extension
of S5. The axioms of Quantified S5, QS5, includes all the axioms of S5 along with
axioms of first-order logic with identity, namely

Id: t = t
∃Id: (c = c)→ ∃x (x = c)
UI: ∀xϕ→ ϕ (y/x)
SF: (t1 = t2)→ (f (..., t1, ...) = f (..., t2, ...))
PS (x = y)→ (ϕ (x)↔ ϕ (y))

Notice that the Principle of Substitution, PS, and Universal Instantiation, UI, are
restricted to variables. If all terms where allowed, these axioms would lose their
validity, and hence result in an unsound system. This is a consequence of including
non-rigid constants, as pointed out in (Fagin et al., 1995).
Simply adding first-order axioms to S5 is not sufficient. This is a result of the

inherent interaction of quantificational and modal principles in the semantics. In
order to handle such, two mixed axioms are required for completeness, namely the
Barcan Formula, BF, and Knowledge of Non-identity, KNI:

BF: ∀xKiϕ (x)→ Ki∀xϕ (x)
KNI: (x1 6= x2)→ Ki (x1 6= x2)

Both BF and KNI are included for all agents i ∈ I. The role of KNI is not of particu-
lar interest here: its role is primarily technical, and necessary for completeness with
respect to the given semantics as the valuations v are world-independent. It should
be noticed, though, that KNI too is included in a version restricted to variables
again due to the fact that the interpretation of constants is world-dependent, and
the unrestricted version would thus not be valid. The opposing principle, Knowledge
of Identicals,

KI: (x1 = x2)→ Ki (x1 = x2)

is deducible from the other axioms, cf. (Fagin et al., 1995).
The Barcan Formula in combination with the remaining axioms allows for the

derivation of the Converse Barcan Formula,

CBF: Ki∀xϕ (x)→ ∀xKiϕ (x)
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as shown in (Hughes and Cresswell, 1996). Both BF and CBF are valid in constant
domain semantics. In fact, these two formulas characterize exactly the constant
domain aspect of the first-order modal models, cf. (Fitting and Mendelsohn, 1999).
If world-relative domains were assigned by a domain assigning function D such that

D : W −→ P (Dom)

i.e. the domain assignment function assigned subsets of the domain to each world,
but the semantics were otherwise left unchanged, the Barcan Formula would char-
acterize the criteria that if two worlds were related by ∼i , i.e. if w ∼i w′, then
their domains were monotonically decreasing in the direction of the relation, i.e.
D (w′) ⊆ D (w).
The Converse Barcan Formula characterizes the converse criteria, namely that if

w ∼i w′, then D (w) ⊆ D (w′). Hence, when ∼i is assumed to be an equivalence
relation – and therefore symmetric – it is no wonder that both formulas are valid,
as they in conjunction require that if (w,w′) ∈∼i, then D (w) = D (w′).22

The Barcan and Converse Barcan Formulas are hence characteristic of constant
domain semantics, a feature of the present logic that has not yet received the at-
tention it deserves. In combination with the total interpretation function, this re-
striction gives agents a full overview of the world they are knowledgeable of. For
the inclusion of the Barcan formulas and, going with them, the choice of constant
domain semantics results in the agents “knowing the domain”. For example, if some
object a exists, then this facts is know, i.e.

∃x (a = x)→ Ki∃x (x = a)

is valid. Further, if the cardinality of the domain is n, then this is known, i.e.

∃x1∃x2∃x3....∃xn[(x1 6= x2) ∧ (x1 6= x3) ∧ ... ∧ (x1 6= xn) ∧ (x2 6= x3) ∧ ... ∧ (x2 6= xn) ∧ ... ∧
(xn−1 6= xn)]→ Ki∃x1∃x2∃x3....∃xn[(x1 6= x2) ∧ (x1 6= x3) ∧ ... ∧ (x1 6= xn) ∧ (x2 6= x3) ∧ ... ∧

(x2 6= xn) ∧ ... ∧ (xn−1 6= xn)]

is valid. This is a feature which makes the current logic inapplicable to a large quan-
tity of real-life situations. For example, the cardinality of the domain of voters is
not known in many voting situations, where this may have an effect on the strategic
decision. In other voting situations, that the domain of voters is common knowledge
is an important aspect and can have a large effect on the outcome. In some situa-
tions, the feature is not only plausible, but required: imaging, for example, playing
cards without knwoing the size of the deck, or playing Nim without knowing the
size of the pile.
22Of course, one could have worlds in a model that were not related by any of the appropriate

relations why their domains would not be demanded to be equal, but as pointed out in (Black-
burn et al., 2001), then if some world(s) have absolutely no connection to the relevant part of a
given model, then the truth values of the formulas of the relevant part of the model will not be
changed were the former world(s) removed from the model all together. This feature of modal
logic is called the Sub Model Property.

47



Chapter 3 Epistemic Logic

Inference Rules As discussed in section 3.2.3, existential de re formulas like

∃xKiϕ(x)

has a special role in QEL. In such formulas, the variable quantified over is bound
to a specific object at the world of evaluation and the formula then “speaks of”
that object in the worlds quantified over by the given operator(s). Such formulas,
often said to be quantifying in, have caused quite some discussion in the literature
of quantified modal logic and has notoriously caused Quine to oppose to the project
as a whole, cf. (Fitting and Mendelsohn, 1999). The problem is that due to the
standard first-order version of the classic inference rule Existential Generalization

ϕ (a)
∃xϕ (x)

Using this inference rule, counter-intuitive conclusions may be drawn. This may be
illustrated using an example of Hintikka’s (2007). Assume that a detective, d, is to
solve a murder in a to him unknown village. Upon arrival, he is truthfully told that
the murderer of the deceased John Doe, j, is the village doctor, v. This induces that

KdM (v, j)

Hence, the detective knows that the village doctor murdered John Doe. Using
standard existential generalization, it now follows that

∃xKdM (x, j)

This has the interpretation that the detective can identify the murderer. The detec-
tive can thus make the arrest asking no further questions. As the detective had no
previous knowledge of the village and it’s inhabitants, this conclusion is too strong.
The detective lacks what Hintikka calls the conclusiveness condition. In the

present terminology, the agent lacks identifying knowledge of the village doctor.
Thus, when involving knowledge operators, the rule guarding existential generaliza-
tion must be changed from the standard version, namely

Kiϕ (a)
∃xKiϕ (x)

where a ∈ CON and ϕ is an arbitrary formula, to the modified version

Kiϕ (a) ∧ ∃xKi (x = a)
∃xKiϕ (x)

as argued in (Hintikka and Sandu, 1995). The latter version explicitly incorporates
the requirement of identifying knowledge regarding a.
The switch is not warranted only by intuition. The former rule of inference does

not preserve truth in semantics with non-rigid constants. Thus, if one wishes to keep
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a system of contingent identity, which in turn is required if the agents should not be
able to identify all objects of the domain by default, the latter rule of inference must
be adopted as the rule of existential generalization. Equivalently, the first-order
axiom ϕ (t)→ ∃xϕ (x), where t is any term, should be restricted to t ∈ V AR, which
is exactly what was done when UI above was restricted to variables only.
With possible confusion regarding the rule of existential generalization out of the

way, it is now easy to list the rules of inference required for a complete axiomatic
system of the logic described. The required rules are Knowledge Generalization and
Modus Ponens as presented in section 3.1.3, and Universal Generalization, UG:

ϕ→ ψ
ϕ→ ∀xψ

where x does not occur free in ϕ.
The logic QS5 is defined as the smallest set of formulas containing all mentioned

axioms which is closed under the mentioned inference rules. This logic is sound
and complete with respect to the semantics as defined. This is reported in (Fagin
et al., 1995), though for unknown reasons, the proof is not supplied. Nor has such a
proof been found in the literature. The result can easily be established using the the
Canonical Class Theorem proven in the next chapter, and it will be shown there.
The logic QS5 and the presented semantics will in the following be referred to simply
as quantified epistemic logic, QEL.
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4 Many-Sorted Modal Logic
In the present exposition of many-sorted modal logic and it’s completeness, the
various definitions and proof-techniques are inspired by the works (Blackburn et al.,
2001; Fagin et al., 1995; Ebbinghaus et al., 1994; Hughes and Cresswell, 1996; Zarba,
2006). Neither of the works combine the material as is done here. In (Zarba,
2006), basic definitions, syntax and semantics are presented for a non-modal many-
sorted logic, but no axiom system is given. Completeness of a sequence calculus
for single-sorted first-order logic is found in (Ebbinghaus et al., 1994). (Blackburn
et al., 2001) provides basic definitions, syntax, semantics and proof-techniques for
the completeness of many propositional modal logics using canonical models. The
Canonical Class Theorem is an adaption of their Canonical Model Theorem, see p.
199. (Hughes and Cresswell, 1996) provides an axiomatization and a completeness
proof for constant domain semantics with identity, but does not include constants
nor function symbols. (Fagin et al., 1995) presents an axiom system for constant
domain semantics with identity and non-rigid constants, but does not prove the
completeness.
The following introduces a system of modal many-sorted logic with constants,

function symbols and identity. The semantics are constant domain semantics and
allows for a combination of rigid and non-rigid constants, depending on the sorts in
the chosen language. The main proof is a variant of the above mentioned Canonical
Model Theorem shown for arbitrary (countably) many sorts and arbitrary (finitely)
many operators.

4.1 Syntax
Definition 4.1 (Ln,σ Language). Define a many-sorted modal language Ln,σ to
consist of

1. A countable set σ of sorts.

2. An countably infinite set V AR of variables, each assigned a sort σ ∈ σ. The
set of σ variables is denoted V ARσ and is assumed countably infinite for each
sort.

3. A possibly empty countable set CON constant symbols, each assigned a sort
σ ∈ σ. The set of constants of sort σ is denoted CONσ. Each set CONσ is
said to be either rigid or non-rigid.
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4. A possibly empty countable set FUN of function symbols, each assigned an
arity σ1 × · · · × σn 7−→ σ with n ≥ 1 and σ1, ..., σn, σ ∈ σ. The set of function
symbols of arity σ1 × · · · × σn 7−→ σ is denoted FUNσ1×···×σn 7−→σ.

5. A possibly empty countable set REL of relation symbols, each assigned an
arity σ1 × · · · × σn with n ≥ 1 and σ1, ..., σn ∈ σ. The set of relation symbols
of arity σ1 × · · · × σn is denote RELσ1×···×σn .

6. The identity symbol =.

7. A set modal operators Ki, one for each i ∈ I = {1, ..., n}.

8. The logical connectives ¬ and ∨.

9. The universal quantifier ∀. J

In relation to 3., it should be noted that no notation is introduced for rigidity.
Whether a set of constants is assumed rigid or not will be clear from context. Fur-
ther, it is assumed that a set of constants is rigid if, and only if, it is not non-rigid.

Definition 4.2 (σ-terms). Define the set of Ln,σ σ-terms by the smallest set TERσ

such that

1. CONσ ⊆ TERσ

2. V ARσ ⊆ TERσ

3. Where f is a function symbols of arity σ1 × · · · × σn 7−→ σ and ti is a term of
sort σi for i = 1, ..., n, f(t1, ..., tn) is a term of sort σ. J

Definition 4.3 (Rigid terms). Define the set of Ln,σ rigid terms as the smallest
set which includes

1. All sets CONσ which are rigid

2. The set of Ln,σ variables, V AR

Definition 4.4 (Well-Formed Formulas). Define the set of Ln,σ well-formed
formulas by

1. Where ti is a term of sort σi for i = 1, 2, the expression (t1 = t2) is an atomic
Ln,σ well-formed formula

2. Where ti is a term of sort σi for i = 1, ..., n, and P is a relation symbol of arity
σ1 × · · · × σn, the expression P (t1, ..., tn) atomic Ln,σ well-formed formula

3. All atomic Ln,σ well-formed formula are Ln,σ well-formed formula
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4. Where ϕ and ψ are Ln,σ well-formed formula, x ∈ V AR and i ∈ I, the following
are Ln,σ well-formed formulas

¬ϕ|ϕ ∧ ψ|∀xϕ|Kiϕ

J

The remaining logical connectives, the existential quantifier and the dual operator
of each Ki, denoted Pi, is defined as usual. Well-formed formulas will be referred to
simply as formulas.

Definition 4.5 (Free Variables, Sentences and Substitution). The free vari-
ables of any term t are the variables of t. For any atomic formula ϕ, the free variables
of ϕ are the variables of the terms of ϕ. For formulas ϕ, ψ the free variables of ¬ϕ
and ϕ∧ψ respectfully are the free variables of ϕ and of ϕ and ψ. For formula ϕ, the
free variables of Kiϕ are the free variables of ϕ. Finally, the free variables of ∀xϕ
are the free variables of ϕ apart from x.
Any variable occurring in ϕ that is not free in ϕ is called bound in ϕ, and any

formula with no free variables is called a sentence.
Where ϕ is a formula, t a term and x a variable, ϕ (t/x) denotes the result of

uniformly substituting t for x in ϕ. That is, ϕ (t/x) is ϕ where each free occurrence
of x has been replaced by an occurrence of t, under the requirement that no free
variables of t becomes bound in the process. J

4.2 Semantics
Definition 4.6 ((n, σ)-frame). Define an (n, σ)-frame for language Ln,σ to be a
triple F = 〈W, (∼i)i∈I , Dom〉 where

1. W is a non-empty set of worlds

2. (∼i)i∈I is a set of binary accessibility relations on W such that for each i ∈ I,
∼i⊆ W ×W

3. Dom is a non-empty set, the domain of quantification. A partition on Dom
is assumed such that Dom = ⋃

σ∈σDomσ and Domσ ∩ Domσ′ = /O for all
σ, σ′ ∈ σ. Each Domσ is assumed non-empty. J

Definition 4.7 (Interpretation). Define an interpretation I for language Ln,σ as
a map where

1. If CONσ is rigid, then I assigns to each constant of CONσ an element of
Domσ

I : CONσ −→ Domσ
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2. If CONσ is non-rigid, then I assigns to each constant of CONσ an element of
Domσ relative to each state in W

I : CONσ ×W −→ Domσ

3. I assigns to each function symbol of arity σ1×· · ·×σn 7−→ σ and each element
of W a set of n + 1-tuples of Domσ1 × · · · × Domσn × Domσ such that each
assigned set is a function, i.e.

I : FUNσ1×···×σn 7−→σ ×W −→ DomDomσ1×···×Domσn
σ

4. I assigns to each relation symbol of arity σ1 × · · · × σn and each element of
W a set of n-tuples from Domσ1 × · · · ×Domσn , i.e.

I : RELσ1×···×σn ×W −→ P(Domσ1 × · · · ×Domσn)

J

Definition 4.8 ((n, σ)-model). Define a (n, σ)-model as an (n, σ)-frame augmented
with an interpretation, denoted M = 〈F , I〉. Where M = 〈F , I〉, the model M is
said to be based on frame F . J

Definition 4.9 (Valuation). Define a valuation to be map v assigning to each
variable of sort σ an element of Domσ, i.e.

v : V AR −→ Dom

such that if x ∈ V ARσ, then v(x) ∈ Domσ.
Further, define an x-variant of v to be a valuation v′ such that v′(y) = v(y) for

all y ∈ V AR/{x}. J

Definition 4.10 (Extension). Define the extension of term t at world w under
valuation v (in the model specified by the context), denoted [[t]]wv , by the following

1. The extension of a non-rigid constant c is [[c]]wv = I (c, w)

2. The extension of a rigid constant c is [[c]]wv = [[c]]v = I (c)

3. The extension of a variable x is [[x]]wv = v(x)

4. The extension for a term f(t1, ..., tn) is [[f(t1, ..., tn)]]wv = d
such that ([[t1]]wv , ..., [[tn]]wv , d) ∈ I (f, w)

The extension [[f(t1, ..., tn)]]wv may also be denoted I(f(t1, ...tn), w). J

Definition 4.11 (Satisfaction). Where M is a model, w ∈ W, I is an interpreta-
tion and v a valuation, denote ϕ being satisfied at w in M under v by M,w �v ϕ,
and define the satisfaction relation recursively as follows:
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M,w �v P (t1, ..., tn) iff ([[t1]]wv , ..., [[tn]]wv ) ∈ I (w,P )
M,w �v t1 = t2 iff [[t1]]wv = [[t2]]wv
M,w �v ¬ϕ iff not M,w �v ϕ
M,w �v ϕ ∧ ψ iff M,w �v ϕ and M,w �v ψ
M,w �v ∀xϕ (x) iff M,w �v′ ϕ (x) for all x-variants of v
M,w �v Kiϕ iff M,w′ �v ϕ for all w′ such that w ∼i w′

J

Definition 4.12 (Satisfiability and Validity). A formula ϕ is satisfiable iff there
exists a model M, a state w and a valuation v such that M,w �v ϕ. A formula is
said to be valid at a state w in a model M iff M,w �v ϕ for all valuations v, and
this is denoted M,w � ϕ. A formula is said to be valid in a model M iff M,w � ϕ
for all states w, denoted M � ϕ. A formula is said to be valid in a frame F iff ϕ
is valid in all models based on F , and this is denoted F � ϕ. A formula is said to
be valid on a class of frames F iff ϕ is valid in every frame F of F, denoted F � ϕ.
Finally, a formula ϕ is said to be valid iff it’s valid on the class of all frames, which
is denoted � ϕ.
Where Γ is a set of formulas, M,w �v Γ,M,w � Γ etc., will be used to denote

that all formulas of Γ are satisfied in M at w under v, are valid at w in M etc. J

Note that where S is a class of models, a model from S is some model M, such that
M ∈ S, but where S is a class of frames, a model from S is a model based on some
frame F , where F ∈ S.

Definition 4.13 (Consequence Relation). Define the semantic consequence re-
lation for some class of structures S (models or frames) in the following manner:
where Γ is some (possibly empty) set of formulas and ϕ is a single formula, ϕ is said
to be a semantic consequence of Γ over S and write Γ �S ϕ iff for all models M from
S and for all valuations v and all states w in M, if M,w �v Γ, then M,w �v ϕ. J

The Principle of Replacement known from regular first-order logic still holds for the
semantics defined above. The principle can be formulated as follows.

Proposition 4.1 (PR). Let ϕ be a formula, x, y be variables, M a model, w a
state and v a valuation. Then, where v′ is a x-variant of v where v (x) = v′ (y) ,
M,w �v ϕ iff M,w �v′ ϕ (y/x) .

Proof. Since the only bearing the valuation has on the truth of a formula ϕ (relative
to a state in a model) is the value assigned by the valuation to the free variable of ϕ,
and v′ is a x-variant of v (and therefore agree with v on all variables except possibly
x) and ϕ (y/x) is exactly like ϕ except where ϕ has x free, ϕ (x/y) has free y and
v (x) = v′ (y), the principle still holds.
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4.3 Normal Axiom Systems
Definition 4.14 (Kn,σ Axioms). The axioms of Kn,σ are all substitution instances
of validities of propositional logic (that is, where ϕ is a validity of propositional logic
with all propositional variable uniformly replaced by formulas of Ln,σ, ϕ is an axiom
of Kn,σ) and the following axiom schemas:

1. Where ϕ is any formula of Ln,σ and t is any rigid term not bound in ϕ,

∀xϕ→ ϕ (t/x) (∀)

2. Where t is any term
t = t (Id)

3. For all rigid terms t, t′, the Principle of Substitutivity

(t = t′)→ (ϕ (t)↔ ϕ (t′)) (PS)

4. Where c is any constant, Existences of Identicals

(c = c)→ ∃x (x = c) (∃Id)

5. For all i ∈ I, axiom K (the Distribution Axiom)

Ki (ϕ→ ψ)→ (Kiϕ→ Kiψ) , (K)

6. For interplay between quantifiers and modal operators, the Barcan Formula

∀xKiϕ (x)→ Ki∀xϕ (x) (BF)

7. Where t, t′ are rigid terms, Knowledge of Non-identity:

(t 6= t′)→ Ki (t 6= t′) (KNI)

J

The axioms ∀, PS and KNI must be restricted to rigid terms only as these axioms
becomes invalid when non-rigid terms are allowed. See (Fagin et al., 1995, p. 88-
90) for a proof with respect to regular first-order modal logic. The proof given
there carries over almost without change. The axiom Dual (Kiϕ ↔ ¬Pi¬ϕ) is not
included as the operator Pi was defined as an abbreviation of ¬Ki¬, why Dual is
not needed as an axiom.

Definition 4.15 (Kn,σ Inference Rules). The inference rules of Kn,σ are

1. Modus Ponens
ϕ, ϕ→ ψ

ψ
, (MP)
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2. Knowledge Generalization (KG): if ϕ is a theorem, then Kiϕ is a theorem.

3. Where x does not occur free in ϕ, Universal Generalization

ϕ→ ψ

ϕ→ ∀xψ
(Gen)

J

Using the two above definitions, the logic Kn,σ can now be defined.

Definition 4.16 (System Kn,σ). Define theminimal many-sorted modal logic based
on Ln,σ, denoted Kn,σ, as the smallest set of formulas that includes all Kn,σ axioms
and which is closed under the Kn,σ inference rules. J

Definition 4.17 (Kn,σ Proof). A Kn,σ proof is a finite sequence of formulas, each
of which is either a Kn,σ axiom or is obtained from one or more earlier formulas of
the sequence by the application of one of the above rules of inference. A formula ϕ
is Kn,σ provable iff it is the last item of such a sequence. That a formula ϕ is Kn,σ

provable is denoted `Kn,σ
ϕ. J

Definition 4.18 (Normal (n, σ) Modal Logics). Any set Λ of Ln,σ formulas that
includes the axioms of Kn,σ and which is closed under the above inference rules is
called a normal (n, σ) modal logic. Where ϕ ∈ Λ, ϕ is a theorem of Λ, also denoted
`Λ ϕ. Further, where Λ1,Λ2 are logics and Λ1 ⊆ Λ2, the logic Λ2 is an extension of
Λ1. J

4.3.1 Three Kn,σ Theorems
Here is an example of a Kn,σ proof, and three theorems that will be used in the
latter.

Proposition 4.2 (KI). Where t, t′ are rigid terms

`K
n,σ

(t = t′)→ Ki (t = t′)

Proof. First notice that (t = t′) → (Ki (t = t)↔ Ki (t = t′)) is an instance of PS
where ϕ (t) = Ki (t = t) . By propositional reasoning, this instance implies (1):

PS (1) `K
n,σ

(t = t′)→ (Ki (t = t)→ Ki (t = t′))
(1) and PC (2) `K

n,σ
Ki (t = t)→ ((t = t′)→ Ki (t = t′))

Id and Nec (3) `K
n,σ

Ki (t = t)
MP on (2) , (3) (4) `K

n,σ
((t = t′)→ Ki (t = t′))

PC in (2) refers to Propositional Calculus. As (ϕ→ (χ→ ψ))→ (χ→ (ϕ→ ψ)) is
a theorem of PC, it is also a theorem of Kn,σ.
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The Kn,σ theorem
(t = t′)→ Ki (t = t′) (KI)

is called Knowledge of Identity, following Fagin et al. (1995).
The following principle will later be referred to as K-distribution for reasons which

are hopefully obvious.

Proposition 4.3 (K-Distribution).

`Kn,σ
Ki (ϕ1 ∧ ... ∧ ϕn)↔ (Kiϕ1 ∧ ... ∧Kiϕn)

Proof. The proof is omitted as it is long and completely analogous to the proof in
standard modal logic. The case for n = 2 can be found in (Hughes and Cresswell,
1996, p. 28)

The following is an unstrict Kn,σ proof of Derived Rule 1 from (Hughes and
Cresswell, 1996):

Proposition 4.4 (Derived Rule 1).

if `Kn,σ
ϕ→ ψ

then `Kn,σ
Kiϕ→ Kiψ

Proof. Assume that `Kn,σ
ϕ → ψ. Then, by KG, `Kn,σ

Ki (ϕ→ ψ) . So, using the
appropriate version of K, `Kn,σ

Kiϕ→ Kiψ is obtained.

4.3.2 Deducibility and Consistency
Before defining soundness and completeness, a definition of Λ-consistency, where Λ
is a logic, is needed. To define this notion, first define Λ-deducibility.

Definition 4.19 (Λ-deducibility). Where Γ∪ {ϕ} is a set of formulas, ϕ is single
formula and Λ is logic, ϕ is Λ-deducible from Γ if, for some subset {ϕ1, ..., ϕn} of Γ,

`Λ (ϕ1 ∧ ... ∧ ϕn)→ ϕ.

When ϕ is Λ-deducible from Γ, this is written Γ `Λ ϕ, and when ϕ is not Λ-deducible
from Γ, this is denoted Γ 6`Λ ϕ. J

Definition 4.20 (Λ-consistency). Where Γ is a set of formulas and ϕ is any single
formula, Γ is Λ-consistent if Γ 6`Λ ϕ ∧ ¬ϕ, and Λ-inconsistent otherwise. Further, a
formula ϕ is Λ-consistent if {ϕ} is Λ-consistent and Λ-inconsistent otherwise. J
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4.4 Soundness
Definition 4.21 (Soundness). Let S be a class of structures (models or frames)
and let Λ be a logic, then Λ is sound with respect to S iff for all formulas ϕ, if `Λ ϕ,
then �S ϕ. J

If Λ is sound with respect to S, S is said to be a class of frames/models for Λ.
It is now shown that Kn,σ is sound with respect to the class of all (n, σ)-frames, Fn,σ,
by showing that 1) all axioms of Kn,σ are valid in Fn,σ and 2) the inference rules of
Kn,σ preserve truth in Fn,σ, that is, in any structure s ∈ Fn,σ, if the hypothesis of a
inference rule is satisfied in s, then so is the conclusion.

Lemma 4.1 (Axiom Validity). All Kn,σ axioms are valid on Fn,σ
Proof. Initially note that the validity of the propositional axioms only depend on
the semantics for the logical connectives, and since these are completely standard,
all propositional tautologies are indeed valid in (n, σ)-frames.

∀: To see that ∀ is valid, assume that ϕ is any formula of Ln,σ, t is a rigid term and
that M,w �v ∀xϕ for some model M based on a frame F ∈ Fn,σ, state w and
valuation v. If the rigid term t is a variable, y, the proof is short. Let v′ be an
x-variant of v such that v (x) = v′ (y). Then, by the semantics for the ∀ quan-
tifier, M,w �v′ ϕ. Thus, by PR, M,w �v ϕ (y/x) . Since F ,M,w and v where
arbitrary, this holds for any F ∈ Fn,σ, and thus ∀ is valid over the class of all
(n, σ)-frames.

Where the rigid term t is a rigid constant c, the Principle of Replacement
from Proposition 4.1 cannot be used, and the proof is on the length of ϕ. For
the atomic cases, assume first that ϕ is (x = t′) andM,w �v ∀xϕ. Then for all
valuations, [[x]]v = [[t′]]wv . Hence, for all d ∈ Dom, d = [[t]]wv . Thus [[c]]v = [[t′]]wv .
SoM,w |=v (c = t′). Assume second that ϕ is P (x, t2, ..., tn) for some predicate
symbol P and terms of appropriate sorts and that M,w |=v ∀xP (x, t2, ..., tn).
Then for all valuations, ([[x]]v, [[t2]]wv , ..., [[tn]]wv ) ∈ I(P,w). So, for all d ∈ Dom,
(d, [[t2]]wv , ..., [[tn]]wv ) ∈ I(P,w). As [[c]]v ∈ Dom, ([[c]]v, [[t2]]wv , ..., [[tn]]wv ) ∈ I(P,w).
Hence M,w |=v P (c, t2, ..., tn). For ϕ being ¬ψ, assuming M,w |=v ∀x¬ψ and
M,w |=v ¬ψ(c/x) leads to a contradiction, as the latter requires that some
d ∈ Dom satisfies ψ, contrary to the first conjunct. Where ϕ is ψ1 ∧ ψ2 and
∀ holds for ψ1 and ψ2, ∀ holds for ϕ as ∀x(ψ1 ∧ ψ2) ↔ (∀xψ1 ∧ ∀xψ2) is
first-order theorem. Finally, where ϕ is Kiψ, M,w |=v ∀xKiψ implies that
M,w |=v Kiψ(c/x) as c is a rigid constant and does therefore not change
extension across states.

Id: The validity of Id follows immediately from the semantics for =, as defined
above.

PS: To see that PS is valid, let F ,M,w and v be as above, let t, t′ be rigid terms,
and let M,w �v (t = t′) and M,w �v ϕ (t) . Since M,w �v (t = t′) , it follows
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from the semantics of = that [[t]]v = [[t′]]v. Where ϕ is an atomic formula,
M,w �v ϕ (t′) follows directly. Assuming PS holds for ψ, let ϕ be ¬ψ, and
assume that M,w �v (t = t′) and M,w �v ¬ψ (t′) . Since PS holds for ψ, and
M,w �v (t = t′) , M,w �v (ψ (t)↔ ψ (t′)). Finally, since assuming M,w �v
¬ψ (t) , M,w �v (ψ (t)↔ ψ (t′)) and M,w �v ψ (t′) leads to a contradiction,
it is concluded that M,w �v ¬ψ (t′), so PS holds for ϕ as well. Where ϕ =
ψ1 ∧ ψ2, and PS holds for both ψ1 and ψ2, it obviously holds for ϕ. Finally,
where ϕ(t) = Kiψ(t) and PS holds for ψ, assume that M,w |=v (t = t′).
Then [[t]]v = [[t′]]v. Assume M,w |=v Kiψ(t). Then for all w′ : w ∼i w′,
M,w′ |=v ψ(t). As PS holds for ψ and t′ is rigid, M,w′ |=v ψ(t′). Hence
M,w |=v Kiψ(t′).

∃Id: To see that ∃Id is valid, notice that all non-rigid constants are being assigned an
extension in each w by I, and that all rigid constants are assign and extension
relative to the model. Further, the semantics for the ∃ quantifier is defined
over all possible valuations. Thus, for every constant c, there will be some
appropriate valuation v, such that v (x) = [[c]]wv for non-rigid constants and
v (x) = [[c]]v. Hence, M,w �v ∃x (x = c) .

K: Assume for a contradiction thatM,w �v ¬ (Ki (ϕ→ ψ)→ (Kiϕ→ Kiψ)) . Then
M,w �v Ki (ϕ→ ψ) ∧ Kiϕ ∧ ¬Kiψ. Thus, for all w′ : w ∼i w′, M,w′ �v
(ϕ→ ψ)∧ϕ. Hence, by the semantics of the implication, also M,w′ �v ψ. But
since M,w �v ¬Kiψ, it follows that M,w �v Pi¬ψ so for some w′′ : w ∼i w′′,
M,w′′ �v ¬ψ. But then M,w′′ �v ¬ψ ∧ ψ, which is impossible.

BF: Assume for a contradiction that M,w �v ¬ (∀xKiϕ (x)→ Ki∀xϕ (x)). Then
M,w �v ∀xKiϕ (x) and M,w �v ¬Ki∀xϕ (x) . By the second conjunct, there
exists w′ such that w′ : w ∼i w′ and M,w′ �v ¬∀xϕ (x) . So, for some x-
variant v′ of v, M,w′ �v′ ¬ϕ (x) . From the first conjunct, it follows that for
all x-variants v′′ of v, including v′, M,w �v′′ Kiϕ (x) . Hence, in all w′′ such
that w′′ : w ∼i w′′, M,w′′ �v′′ ϕ (x) . As these w′′ include w′, this is absurd.

KNI: Assume that M,w �v (t 6= t′) for two rigid terms t, t′. Then [[t]]v 6= [[t′]]v. As
the extension of rigid terms is state-independent, this goes for all w′ ∈ W,
especially all w′ such that w′ : w ∼i w′. So M,w �v Ki (t 6= t′).

Lemma 4.2 (Validity Preservation). The Kn,σ inference rules preserve validity
in Fn,σ

Proof. It is shown that each of the three Kn,σ inference rules preserve validity:

MP: Assume that both ϕ→ ψ and ϕ are valid in Fn,σ. Then in all models based on
any frame in Fn,σ, in all worlds, under all valuation, both are true. But then,
by the semantics of the implication, so is ψ. Hence ψ is valid as well.
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KG: Assume that ϕ is valid in Fn,σ. Then in all models based on any frame in Fn,σ,
worlds and valuations M,w �v ϕ. Now let M,w and v be arbitrary. Then
M,w �v Kiϕ as for all w′ such that w′ : w ∼i w′, M,w′ �v ϕ. So Kiϕ is valid
too.

Gen: Assume for some M ∈ Fn,σ that ϕ is a formula in which x does not occur
free and ψ is any formula and argue by contraposition: assume that M,w �v
¬ (ϕ→ ∀xψ) , that is, that (ϕ→ ∀xψ) is not valid. Then M,w �v ϕ and
M,w �v ¬∀xψ so M,w �v′ ¬ψ for a suitable x-variant v′ of v. But as x did
not occur free in ϕ, M,w �v′ ϕ. So (ϕ→ ψ) wasn’t valid either.

Theorem 4.1 (Soundness). Since all axioms of Kn,σ are valid in Fn,σ, the class
of all (n, σ)-frames, and the rules of inference all preserve truth with respect to this
class of frames, it is concluded that Kn,σ is sound with respect to Fn,σ, that is, if
`Kn,σ

ϕ, then �Fn,σ ϕ.

4.5 Completeness
Where Λ is a logic and S a class of structures, it is first shown that any Λ-consistent
set of formulas is satisfiable on some structure s ∈ S if and only if Λ is complete
with respect to the class S. This is the content of the proposition IFF below. Then
the canonical model for logic Λ and Λ-consistent set of formulas Ω, MΛ

Ω is defined.
Most of the present section concerns the canonical models and related lemmas. The
final lemma, the Truth Lemma, states that any Λ-consistent set of formulas Ω is
satisfied in the model MΛ

Ω . Defining the class of canonical model for Λ, MΛ, to be
the set of MΛ

Ω for any Λ-consistent set Ω yields the conclusion that Λ is complete
with respect to MΛ. This is the content of the main result, the Canonical Class
Theorem. From this it can be concluded that if MΛ ⊆ S, then Λ is complete with
respect to the class S. This, in turn, can be used to provide completeness proofs for
many-sorted variants of well-known propositional systems.

Definition 4.22 (Completeness). Let S be a class of frames (or models) and let
Λ be a logic. Λ is (strongly) complete with respect to S if, for any set of formulas
Γ ∪ {ϕ} , if Γ �S ϕ, then Γ `Λ ϕ. J

Using this definition of completeness, the following result can be obtained, which
allowing a proof of completeness using canonical models:

Proposition 4.5 (IFF). A logic Λ is (strongly) complete with respect to a class of
structures S iff every Λ-consistent set of formulas is satisfiable on some structure
s ∈ S.

Proof. Left to right: Assume that Λ is complete with respect to S. Then every Λ-
consistent set is satisfiable on some s ∈ S. For suppose Γ ∪ {ϕ} is Λ-consistent but
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not satisfiable on any s ∈ S. Then Γ �S ¬ϕ, and so, by completeness, Γ `Λ ¬ϕ. But
then Γ ∪ {ϕ} is Λ-inconsistent contrary to assumption.

Right to left: Assume that Λ is not complete with respect to S. Then, for
some set of formulas Γ∪{ϕ} , Γ �S ϕ and Γ 6`Λ ϕ. By the second conjunct it follows
that Γ ∪ {¬ϕ} is Λ-consistent, but, by the first, not satisfiable on any structure in
S, contrary to assumption.

4.5.1 States of the Canonical Model
Using canonical models it will be shown that any Λ-consistent set of Ln,σ formulas
can be satisfied. When constructing the canonical model MΛ

Ω for some such Λ-
consistent set of formulas Ω, the statespace WΛ

Ω is going to consist of all maximal
Λ-consistent sets of formulas satisfying the ∀-property. These two notions are defined
in this section, where also the basic lemmas are proven.
Definition 4.23 (Maximal Λ-consistent). Where Γ is a set of formulas and Λ is
a logic, Γ is said to be maximal Λ-consistent iff Γ is Λ-consistent and any proper
extension of Γ is Λ-inconsistent. J

Where Γ is maximal Λ-consistent, Γ is said to be a a Λ-maximal consistent set, a
Λ-MCS. It is further required that each Λ-MCS has the ∀-property1:
Definition 4.24 (∀-property). Where Γ is a set of Ln,σ formulas, Γ has the ∀-
property iff for every Ln,σ formula ϕ and every variable x, there is some variable y
such that (ϕ (y/x)→ ∀xϕ) ∈ Γ. J

The point of requiring the Λ-MCSs to have the ∀-property is that whenever ∀xϕ 6∈ Γ
for some Λ-consistent set with the ∀-property, then there must be some witness y
such that ϕ (y/x) 6∈ Γ. For since Γ has the ∀-property, ϕ (y/x)→ ∀xϕ ∈ Γ for some
y, so if for all y, ϕ (y/x) ∈ Γ, then ∀xϕ ∈ Γ, contradicting the assumption of Γ’s
consistency.
Proposition 4.6 (∀-preservation). If a set of formulas Γ from language Ln,σ has
the ∀-property, then for all sets of formulas ∆ from Ln,σ such that Γ ⊆ ∆, ∆ has
the ∀-property.
In order to ensure that any arbitrary set of formulas from Ln,σ can be extended

to a Λ-MCS with the ∀-property, there is, in certain cases,2 need for more variables
than those contained in Ln,σ. An augmented language is defined as follows.
Definition 4.25 (L+

n,σ Language). Where Ln,σ is a many-sorted modal language
for n agents, let L+

n,σ be just like Ln,σ, except that added to L+
n,σ is infinitely many

new variables of each sort σ ∈ σ. Otherwise the two languages are the same, and
in particular all well-formed formulas of Ln,σ are also well-formed formulas of L+

n,σ.
The set of L+

n,σ variables is denoted V AR+. J

1This property is also referred to in the literature as “containing witnesses”, “the omega condition”
and “saturation”.

2See (Hughes and Cresswell, 1996, p. 257) for a nice example for standard first-order modal logic.
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Three lemmas are proven demonstrating facts regarding sets of formulas needed
for the construction of the canonical models.

Proposition 4.7 (Properties of Λ-MCS). If Λ is a logic and Γ is a Λ-MCS, then

i) Λ ⊆ Γ
ii) for all formulas ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ
iii) for all formulas ϕ, ψ : ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ
iv) Γ is closed under Modus Ponens

Proof. i) If Λ is not in Γ, then for some ϕ ∈ Λ, ϕ 6∈ Γ so ¬ϕ ∈ Γ as Γ is maximal,
so Γ would be Λ-inconsistent contrary to assumption.
ii) If there was some ϕ such that neither ϕ or ¬ϕ is in Γ, one of them could be

added not yielding an inconsistent set, so Γ was not maximal.
iii) Assume ϕ∧ψ ∈ Γ but neither ϕ nor ψ is in Γ. Then, by ii), ¬ϕ and ¬ψ is in

Γ. But then {¬ϕ, ϕ ∧ ψ} ⊆ Γ making Γ Λ-inconsistent, as ¬ ((ϕ ∧ ψ) ∧ ¬ϕ) is a PC
theorems and thus in Γ by i). Now, if both ϕ and ψ are in Γ, but ¬ (ϕ ∧ ψ) also is
in Γ, the again Γ is Λ-inconsistent by i).
iv) Assume Γ is not closed under MP. Then, for some ϕ, ψ, {ϕ, (ϕ→ ψ) ,¬ψ} ⊆ Γ.

So by two applications of iii) (ϕ ∧ (ϕ→ ψ) ∧ ¬ψ) ∈ Γ. But then Γ is inconsistent,
as ¬ (ϕ ∧ (ϕ→ ψ) ∧ ¬ψ) ∈ Λ.

Lemma 4.3 (Lindenbaum’s Lemma). If Γ is a Λ-consistent set of formulas, then
there exists a Λ-MCS Γ+ such that Γ ⊆ Γ+.

Proof. Suppose Γ is a Λ-consistent set of formulas from Ln,σ, and let ϕ0, ϕ1, ϕ2, ...
be an enumeration of the well-formed formulas of Ln,σ. Then define a series of sets
Γn as follows:

Γ0 := Γ

Γn+1 :=
{

Γn ∪ {ϕn} if this is Λ-consistent
Γn ∪ {¬ϕn} otherwise

and finally
Γ+ :=

⋃
n≥0

Γn

Γ+ is the required Λ-MCS. First, Γ ⊆ Γ+ by the definition of Γ+. Secondly, Γ0
is Λ-consistent by assumption. Where Γn is Λ-consistent, and Γn+1 assumed Λ-
inconsistent, a contradiction is reached since this means that both Γn ∪ {ϕn+1} and
Γn∪{¬ϕn+1} are inconsistent, and thus, there is some set of formulas ψ1, ..., ψm ∈ Γn
such that `Λ (ψ1 ∧ ... ∧ ψm) → ¬ϕn+1 and some set of formulas ψ′1, ..., ψ′k ∈ Γn
such that `Λ (ψ′1 ∧ ... ∧ ψ′k)→ ϕn+1. But as `Λ ((ψ1 ∧ ... ∧ ψm) ∧ (ψ′1 ∧ ... ∧ ψ′k))→
(ϕn+1 ∧ ¬ϕn+1), it follows by PC that `Λ ¬ (ψ1 ∧ ... ∧ ψm ∧ ψ′1 ∧ ... ∧ ψ′k). But since
ψ1, ..., ψm, ψ

′
1, ..., ψ

′
k ∈ Γn and Λ ⊆ Γ (Property of Λ-MCSs) it follows that both

¬ (ψ1 ∧ ... ∧ ψm ∧ ψ′1 ∧ ... ∧ ψ′k) ∈ Γn and (ψ1 ∧ ... ∧ ψm ∧ ψ′1 ∧ ... ∧ ψ′k) ∈ Γn so Γn
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is Λ-inconsistent, contrary to assumption. Therefore Γn+1 is Λ-consistent, and thus
Γm is Λ-consistent for all m ≥ 0. Thirdly, Γ+ is Λ-consistent, since if it was not,
some finite subset of Γ+ would have to be Λ-inconsistent, but since every finite
subset of Γ+ is a subset of some Γn and Γn is Λ-consistent for all n, Γ+ cannot be
Λ-inconsistent. Finally, Γ+ is a Λ-MCS. Consider any formula ϕn. Either ϕn ∈ Γn or
else ¬ϕn ∈ Γn. Since Γn ⊆ Γ+, either ϕn ∈ Γ+ or ¬ϕn ∈ Γ+ so any proper extension
of Γ+ is Λ-inconsistent, and thus Γ+ is a Λ-MCS.
Lemma 4.4 (Saturation). If Γ is a Λ-consistent set of formulas from Ln,σ, then
there exists a Λ-consistent set of formulas Γ∀ of L+

n,σ that has the ∀-property and
Γ ⊆ Γ∀.
Proof. Assume an enumeration of all formulas of the form ∀xϕ for any formula ϕ
and of all variables from L+

n,σ is given. Define a series of sets ∆n thus:

∆0 := Γ
∆n+1 := ∆n ∪ {ϕ (y/x)→ ∀xϕ}

where ∀xϕ is the n+ 1th formula in the enumeration and y is the first variable not
in ∆n or ϕ. Now, since ∆0 = Γ ⊆ Ln,σ, and ∆n has been formed by adding only
n new formulas, there will still be infinitely many more variables left from L+

n,σ to
provide the first variable not used, y. Since ∆0 is assumed Λ-consistent, it is now
shown that where ∆n is Λ-consistent, so is ∆n+1. So assume that ∆n is Λ-consistent,
but that ∆n+1 is not. Then there must be formulas ϕ1, ..., ϕn ∈ Γn such that

`Λ (ϕ1 ∧ ... ∧ ϕn)→ ϕ (y/x) (∗)
and

`Λ (ϕ1 ∧ ... ∧ ϕn)→ ¬∀xϕ
Now, since y does not occur free in (ϕ1 ∧ ... ∧ ϕn) since these are from Γn, from (∗)
and Gen it follows that that

`Λ (ϕ1 ∧ ... ∧ ϕn)→ ∀yϕ (y/x)
but since y does not occur free in ϕ, ∀yϕ (y/x) is, by standard first-order reasoning3,
equivalent to ∀xϕ. This in turn means that

`Λ (ϕ1 ∧ ... ∧ ϕn)→ ∀xϕ
and thus

Γn `Λ ∀xϕ ∧ ¬∀xϕ
and Γn is thus Λ-inconsistent contrary to assumption, and it is concluded that Γn+1
is consistent. So Γm is Λ-consistent for all m ≥ 0.
Finally, let

∆+ =
⋃
n≥0

∆n

By the same reasoning as in the proof for Lindenbaum’s Lemma, ∆+ is consistent,
and it has the ∀-property by the above construction.

3cf. (Hughes and Cresswell, 1996, p. 242, 258).
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4.5.2 Canonical Models
When defining the canonical model for logic Λ and formula set Ω, there is a subtlety
regarding identity statements that needs to be taken care of. Simply defining the
set of states for a canonical model as the set of all Λ-MCSs as is done in first-order
modal logic without identity will not do, since it is needed that the same identity
statements between rigid terms to be true in all states of the model. To ensure this,
attention is restricted to a connected part of the canonical model containing a world
which includes Λ.

Definition 4.26 (∼-connected). For some frame F = 〈W, (∼i)i∈I , Dom〉, let
w,w′ ∈ W . w and w′ are said to be ∼-connected iff there exists some w0, w1, ..., wn ∈
W such that w0 = w, wn = w′ and for all 0 ≤ k ≤ n there is some i ∈ I such that
wk ∼i wk+1. The ∼w-connected sub-frame of F is a frame Fw = 〈Ww, (∼′i)i∈I , Dom〉
such that Ww ⊆ W consists of all worlds ∼-connected to w and ∼′i is identical to ∼i
restricted to Ww. J

That rigid term identity statements are invariant over states of a ∼-connected model
will be shown after the definition of the canonical model.

Definition 4.27 (Canonical Model). The canonical modelMΛ
Ω for a Λ-consistent

set Ω of formulas from language Ln,σ with extension L+
n,σ is the quadruple〈

WΛ
Ω , (∼Λ

i )i∈I , DomΛ, IΛ
〉

where

1. WΛ
Ω is the set of all Λ-MCSs with the ∀-property in L+

n,σ ∼-connected to some
Λ-MCS extending Ω.

2. Each ∼Λ
i is the binary relation on WΛ

Ω defined by (w,w′) ∈∼Λ
i iff for every

formula Kiϕ ∈ L+
n,σ, if Kiϕ ∈ w, then ϕ ∈ w′.

3. DomΛ = ⋃
σ∈σDom

Λ
σ , where each DomΛ

σ = {[x] : x ∈ V AR+
σ } where [x] =

{y : x ' y} where x ' y iff (x = y) ∈ w for any w ∈ WΛ
Ω .

4. IΛ is an interpretation such that

a) Where P is a predicate symbol of arity σ1 × · · · × σn,

IΛ (P,w) =
{

([x1] , ..., [xn]) ∈ DomΛ
σ1 × · · · ×Dom

Λ
σn : P (x1, ..., xn) ∈ w

}
b) Where f is a function symbol of arity σ1 × · · · × σn 7−→ σ,

IΛ (f, w) =
{

([x1] , ..., [xn] , [x]) ∈ DomΛ
σ1 × · · · ×Dom

Λ
σn ×Dom

Λ
σ :

f (x1, ..., xn, x) ∈ w}
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c) Where c is a non-rigid constant, IΛ (c, w) = [x] ∈ DomΛ : (x = c) ∈ w.
d) Where c is a rigid constant, IΛ (c) = [x] ∈ DomΛ : (x = c) ∈ w, for any

w ∈ WΛ
Ω . J

The choice of defining the domain of the canonical model as consisting of equiv-
alence classes has been adopted from (Ebbinghaus et al., 1994). This choice is
partly motivated partly by aesthetics (compare with (Hughes and Cresswell, 1996,
p. 315-316)) and partly as it ensures that every term has a well-defined extension.

Definition 4.28 (Canonical Valuation). Define the canonical valuation vΛ by
vΛ (x) = [x] . J

It will now be shown that all Λ-MCSs of a canonical model WΛ
Ω share the same

identity statements between variables.

Proposition 4.8 (Well-defined Domain). For any w,w′ ∈ WΛ
Ω and any rigid

terms t, t′ ∈ L+
n,σ, (t = t′) ∈ w iff (t = t′) ∈ w′

Proof. Let w,w′ ∈ WΛ
Ω . Assume w ∼Λ

i w
′ and (t = t′) ∈ w. Then by KI, Ki(t = t′) ∈

w and hence (t = t′)∈ w′ by the definition of ∼Λ
i . Assume w′ ∼Λ

i w and (t = t′) ∈ w.
If (t = t′) 6∈ w′, then (t 66= t′) ∈ w′ by maximality. By KNI, Ki(t 6= t′) ∈ w′. Hence
(t 6= t′) ∈ w, which contradicts the consistency. If neither w ∼Λ

i w
′ nor w′ ∼Λ

i w for
any i, then w,w′ are linked through other w′′(s). As just argued, any two connected
worlds share the same identity statements between rigid terms, and hence they all
will.

4.5.3 Key Lemmas: Existence and Truth
The following lemma is essential to the proof of the Truth Lemma below and has
by far the most elaborate proof of any of the propositions in this text. The lemma
guarantees that whenever a formula of the type Piϕ is true at a state Γ in the
canonical model, there will exist a suitable state w in the model related to Γ that
satisfies ϕ. This is done in three steps. First, one constructs a suitable w relative
to Γ by first constructing a consistent set w− that contains the relevant formula ϕ.
Secondly, it is then shown that w− can be extended to a consistent set w+ that has
the ∀-property. Finally, this set can be extended to a maximally consistent set w,
which by construction is related to Γ.

Lemma 4.5 (Existence). If Γ ⊆ L+
n,σ is a Λ-MCS with the ∀-property extending

some formula set Ω ⊆ L+
n,σ and Piϕ ∈ Γ, then there exists a w ∈ WΛ

Ω such that
Γ ∼Λ

i w and ϕ ∈ w.

Proof. For some i ∈ I assume that Piϕ ∈ Γ. A suitable w is constructed. Let w−
be {ϕ} ∪ {ψ : Kiψ ∈ Γ}.
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First, w− is Λ-consistent, as shown thus: assume w− is Λ-inconsistent. As
{ψ : Kiψ ∈ Γ} is Λ-consistent, then for some ψ1, ..., ψn ∈ {ψ : Kiψ ∈ Γ},

`Λ (ψ1 ∧ ... ∧ ψn)→ ¬ϕ

and by applying Gen, the obvious instance of K and MP it follows that that

`Λ Ki (ψ1 ∧ ... ∧ ψn)→ Ki¬ϕ

So by K-distribution
`Λ (Kiψ1 ∧ ... ∧Kiψn)→ Ki¬ϕ

As Γ is assumed to be an Λ-MCS, (Kiψ1 ∧ ... ∧Kiψn) ∈ Γ as Kiψ1, ..., Kiψn ∈ Γ
(Prop. MCS). Thus, by MP, Ki¬ϕ ∈ Γ, so, by Dual, ¬Piϕ ∈ Γ, but this violates
the assumption that Γ is Λ-consistent. Hence, w− is Λ-consistent.
Secondly, it is argued that from w− a set w+ can be constructed which has

the ∀-property. To see this, define two enumerations. First, let there be given some
enumeration of all formulas of the form ∀yψ. Secondly, define a sequence of formulas
ϕ0, ϕ1, ϕ2, ..., where ϕ from above is ϕ0. Let ∀yψ be the n+ 1th formula in the first
enumeration and z the first variable such that

{ψ : Kiψ ∈ Γ} ∪ {ϕn ∧ (ψ (z/y)→ ∀yψ)} (∗)

is Λ-consistent. Then define ϕn+1 as ϕn∧(ψ (z/y)→ ∀yψ) . Above it was shown that
w− = {ψ : Kiψ ∈ Γ}∪{ϕ0} is consistent. It is now shown that given {ψ : Kiψ ∈ Γ}∪
{ϕn} is consistent, there will always be a variable z satisfying (∗) .4
Assume that there where no such z. Then for every variable z in L+

n,σ, there would
be some set of formulas {χ1, χ2, ..., χn} ⊆ {ψ : Kiψ ∈ Γ} such that

`Λ (χ1 ∧ χ2 ∧ ... ∧ χn)→ (ϕn → (ψ (z/y) ∧ ¬∀yψ))

From Derived Rule 1 it follows that

`Λ Ki (χ1 ∧ χ2 ∧ ... ∧ χn)→ Ki (ϕn → (ψ (z/y) ∧ ¬∀yψ))

and so, by K-distribution

`Λ (Kiχ1 ∧Kiχ2 ∧ ... ∧Kiχn)→ Ki (ϕn → (ψ (z/y) ∧ ¬∀yψ))

But as {χ1, χ2, ..., χn} ⊆ {ψ : Kiψ ∈ Γ} , the inclusion {Kiχ1, Kiχ2, ..., Kiχn} ⊆ Γ
holds. As Γ is an Λ-MCS, it follows that Ki (ϕn → (ψ (z/x) ∧ ¬∀yψ)) ∈ Γ for all z.
Continuing, let z be a variable not occurring in ψ nor ϕn and consider the formula

∀zKi (ϕn → ¬ (ψ (z/y)→ ∀yψ))
4Unfortunately, the saturation lemma cannot be used, as {ψ : Kiψ ∈ Γ} might contain all the
variables of L+

n,σ in the first place.
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As Γ has the ∀-property by assumption, there is some variable z′ such that

Ki (ϕn → ¬ (ψ (z′/y)→ ∀yψ))→ ∀zKi (ϕn → ¬ (ψ (z/y)→ ∀yψ))

belongs to Γ. But as Ki (ϕn → (ψ (z/x) ∧ ¬∀yψ)) ∈ Γ for all z, it also does so for
z′, so it follows that also ∀zKi (ϕn → ¬ (ψ (z/y)→ ∀yψ)) ∈ Γ.
Notice that

∀zKi (ϕn → ¬ (ψ (z/y)→ ∀yψ))→ Ki∀z (ϕn → ¬ (ψ (z/y)→ ∀yψ))

is an instance of the Barcan Formula and is therefore also in Γ. Again, it follows
that

Ki∀z (ϕn → ¬ (ψ (z/y)→ ∀yψ)) ∈ Γ.
From here, as z does not occur in ϕn, it follows by first-order reasoning that

Ki (ϕn → ∀z¬ (ψ (z/y)→ ∀yψ)) ∈ Γ. (∗∗)

Recall that ∃y (ϕ (y/x)→ ∀xϕ) for all formulas ϕ is a theorem of first-order logic if
y is not free in ∀xϕ,5 from which it follows that

`Λ ∃z (ψ (z/y)→ ∀yψ)

so ∃z (ψ (z/y)→ ∀yψ) ∈ Γ. But from this and (∗∗) and the fact that Γ is Λ-
consistent, Ki¬ϕn must be in Γ. But then {ψ : Kiψ ∈ Γ} ∪ {ϕn} is Λ-inconsistent
after all! Therefore conclude, that there always will be variable z making

{ψ : Kiψ ∈ Γ} ∪ {ϕn ∧ (ψ (z/y)→ ∀yψ)} = {ψ : Kiψ ∈ Γ} ∪ {ϕn+1} (∗)

Λ-consistent.
Finally, w+ = {ψ : Kiψ ∈ Γ}∪{∪n≥0 {ϕn}} is Λ-consistent since {ψ : Kiψ ∈ Γ}∪
{ϕn} for all n by the above is consistent and since `Λ ϕm → ϕn for m ≥ n. Further,
w+ has the ∀-property by construction, and since w+ is Λ-consistent it can be
extended to a Λ-MCS w by Lindenbaum’s Lemma. w also has the ∀-property by
∀-preservation. As {ψ : Kiψ ∈ Γ} ⊆ w, by the definition of ∼Λ

i , Γ ∼Λ
i w.

Lemma 4.6 (Truth). For every formula ϕ ∈ Ln,σ and every w ∈ WΛ
Ω , M

Λ
Ω , w �vΛ ϕ

iff ϕ ∈ w.

Proof. The proof is by induction on the construction of ϕ. Let w ∈ WΛ
Ω .

Identity Let t1, t2 ∈ TERσ. Then MΛ
Ω , w �vΛ (t1 = t2) iff [[t2]]wvΛ = [[t2]]wvΛ iff

[[t1]]wvΛ , [[t2]]wvΛ ∈ [x] and for some x iff (t1 = x) , (t2 = x) ∈ w iff (t1 = t2) ∈ w.

Atomic Let P be any predicate symbol of arity σ1×· · ·×σn and let tk ∈ TERσk for
k = 1, ..., n. ThenMΛ

Ω , w �vΛ P (t1, ..., tn) iff ([[t1]]wvΛ , ..., [[tn]]wvΛ) = ([x1], ..., [xn]) ∈
IΛ (P,w) iff P (x1, ..., xn) ∈ w. But as (t1 = x1) , ..., (tn = xn) ∈ w, P (t1, ..., tn) ∈
w.

5(Hughes and Cresswell, 1996, p. 242)
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Negation MΛ
Ω , w �vΛ ¬ϕ iff not MΛ

Ω , w �vΛ ϕ iff ϕ 6∈ w iff ¬ϕ ∈ w

Conjunction MΛ
Ω , w �vΛ ϕ ∧ ψ iff MΛ

Ω , w �vΛ ϕ and MΛ
Ω , w �vΛ ψ iff ϕ ∈ w and

ψ ∈ w iff (Prop. MCS) ϕ ∧ ψ ∈ w.

Universal If AssumeMΛ
Ω , w �vΛ ∀xϕ (x) . Then for all x-variants vΛ′ of vΛ, MΛ

Ω , w �vΛ′

ϕ (x) . So, for all variables y, MΛ
Ω , w �vΛ′ ϕ (y/x) . By the induction hypothesis,

ϕ (y/x) ∈ w for all such y, especially for the y such that (ϕ (y/x)→ ∀xϕ) ∈ w,
which exist by the ∀-property. So ∀xϕ ∈ ϕ.

Universal Only If By contraposition. Assume ∀xϕ (x) 6∈ w. Then by maximality,
¬∀xϕ (x) ∈ w. Thus, by a contrapositive application of the ∀-property for some
y, ¬ϕ (y/x) ∈ w. Hence, by the induction hypothesis, MΛ

Ω , w �vΛ ¬ϕ (y/x) .
Thus, for the x-alternative to vΛ where vΛ′ (x) = vΛ (y) , MΛ

Ω , w �vΛ′ ¬ϕ (x) so
MΛ

Ω , w �vΛ ∃x¬ϕ (x) so MΛ
Ω , w �vΛ ¬∀xϕ (x) .

Modal If Assume that Kiϕ ∈ w and that w ∼Λ
i w′ for arbitrary w′. Then by

definition of ∼Λ
i , ϕ ∈ w′. By the induction hypothesis, MΛ

Ω , w
′ �vΛ ϕ – this

holds for all w′ such that w ∼Λ
i w

′ as w′ was arbitrary. Hence MΛ
Ω , w �vΛ Kiϕ.

Modal Only If Assume that Kiϕ 6∈ w. Then ¬Kiϕ ∈ w, so Pi¬ϕ ∈ w. Hence, from
the existence lemma, there is some w′ ∈ WΛ

Ω such that ¬ϕ ∈ w′ and w ∼Λ
i w

′.
By the induction hypothesis, MΛ

Ω , w
′ �vΛ ¬ϕ, and so MΛ

Ω , w �vΛ Pi¬ϕ why
MΛ

Ω , w �vΛ ¬Kiϕ.

4.5.4 Completeness Results
The canonical model for logic Λ was above defined relative to the set Ω of formulas
to be shown satisfiable in a given instance.6 This was done as the instance of the
canonical model used is required to be connected in order to ensure the same identity
statements holding between variables across all states. In order to reach the main
result of this section, a last definition is required.
Above, the canonical model was defined relative to a Λ-consistent set Ω, so one

last definition is required before stating the main result.

Definition 4.29 (Canonical Class). For a normal (n, σ) modal logic Λ define
the class MΛ of canonical models for Λ as the set of models MΛ

Ω where Ω is any
Λ-consistent set. J

Theorem 4.2 (Canonical Class Theorem). Any normal (n, σ) modal logic Λ is
(strongly) complete with respect to the class of canonical models for Λ.

6This is opposed to the definition in (Blackburn et al., 2001, p. 197) where the canonical model
for a propositional modal logic Λ includes all Λ-MCSs, resulting in one canonical model per
logic.
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Proof. By the proposition IFF above, the completeness of a normal (n, σ) modal
logic Λ with respect to a class of structures S reduces to providing, for each Λ-
consistent set of formulas Ω, a structure s ∈ S such that s satisfies Ω. By Linden-
baum’s Lemma and the Saturation Lemma, Ω can be extended to a Λ-MCS w with
the ∀-property, and a model MΛ

Ω ∈ MΛ can be defined such that Ω ⊆ w ∈ WΛ
Ω . By

the Truth Lemma above, MΛ
Ω , w �vΛ Ω. So, for any Λ-consistent set of formulas Ω,

Ω is satisfiable on some structure MΛ
Ω ∈ MΛ, and thus Λ is complete with respect to

the class of it’s canonical models.

One easy application of the above theorem is to prove the completeness of Kn,σ

with respect to the class of all n-frames.

Theorem 4.3. Kn,σ is complete with respect to the class of all (n, σ)-frames.

Proof. By IFF on page 61, it is sufficient to find for anyKn,σ-consistent set Ω a state
w in a model M based on some (n, σ)-frame from Fn,σ, the class of all (n, σ)-frames,
and some valuation v, such that M,w �v Ω. Choose the model to be MKn,σ

Ω , the
state to be some Kn,σ-MCS Γ in WKn,σ

Ω extending Ω and the valuation to be vKn,σ .

Then MKn,σ

Ω ,Γ �vKn,σ Ω by the Truth Lemma. Hence Kn,σ is complete with respect
to the class of all (n, σ)-frames by the Canonical Class Theorem.

Corollary 4.1. `Kn,σ
ϕ if, and only if, �F(n,σ) ϕ.

Proof. This follows immediately from Soundness and the previous theorem, taking
Ω to be the empty set.

4.6 Adding Additional Axioms
In this section, the additional axioms T and 5 are introduced in order to define the
logic S5n,σ. This logic is then shown to be sound and complete with respect to
the class EQn,σ of (n, σ)-frames in with the accessibility relations are equivalence
relations. As a special case, the completeness of the logic QS5 with respect to the
class CQEL of quantified epistemic models from chapter 3 follows.

Definition 4.30 (Axioms T and 5). Denote the following two axioms T and 5,
respectively:

Kiϕ→ ϕ (T)
¬Kiϕ→ Ki¬Kiϕ (5)

J

Notice that Piψ → KiPiψ is an instance of 5 using the definition of Pi and
ϕ := ¬ψ. This is instance is used in the proof for S5n,σ completeness below.

70



4.6 Adding Additional Axioms

Definition 4.31 (Logic S5n,σ). The logic S5n,σ based on language Ln,σ is the
smallest set of Ln,σ formulas obtained by adding to the Kn,σ the axioms T and 5,
and which is closed under the Kn,σ inference rules. J

Definition 4.32 (Class EQn,σ). Let EQn,σ denote the class consisting of all (n, σ)-
frames in which all accessibility relations are equivalence relations. J

Lemma 4.7. Where MΛ
Ω is a canonical model as defined in Definition 4.27, w,w′

are states in MΛ
Ω and ψ any L+

n,σ formula:

w ∼Λ
i w

′ iff (ψ ∈ w′ implies Piψ ∈ w)

Proof. Assume that w ∼Λ
i w′. By Definition 4.27, w ∼Λ

i w′ iff (Kiϕ ∈ w implies
ϕ ∈ w′), for all possible formulas Kiϕ ∈ L+

n,σ. This is equivalent to the requirement
that (¬ϕ ∈ w′ implies ¬Kiϕ ∈ w). Rewritten using the definition of Pi, this amounts
to (¬ϕ ∈ w′ implies Pi¬ϕ ∈ w). Setting ϕ := ¬ψ proves the lemma.

Theorem 4.4 (S5n,σ Soundness). The logic S5n,σ is sound with respect to the
class EQn,σ.

Proof. It must be shown that all axioms of S5n,σ are valid in EQn,σ, and that the
S5n,σ inference rules preserve validity in the same class.
Lemma 4.1 shows that all Kn,σ axioms are valid in all frames, hence also in all

EQn,σ frames. Further, Lemma 4.2 shows that allKn,σ inference rules preserve truth
on all frames, hence also on all EQn,σ frames. Hence, to show that S5n,σ is sound
with respect to EQn,σ, the only thing required is to show that the axioms T and 5
are valid in this class.
T. Assume F = 〈W, (∼i)i∈I , Dom〉 is a EQn,σ frame, and that M,w |=v Kiϕ

for any model, world, valuation, i and ϕ. Then, for all w′ such that w ∼i w′,
M,w′ |=v ϕ. As ∼i is an equivalence relation, it is also reflexive. Therefore, w ∼i w.
Hence M,w |=v ϕ. From this it follows that M,w |=v Kiϕ → ϕ. As M,w, v and i
were arbitrary, T is shown to be valid in EQn,σ.
5. To show 5 is valid in EQn,σ, assume thatM is a model based on a EQn,σ frame.

Then ∼i is euclidean, for all i ∈ I. Assume further that M,w |=v ¬Kiϕ, for some
w, v and i. By the existence lemma and the definition of the Pi-operator, there
is some w′ such that w ∼i w′ and M,w′ |=v ¬ϕ. Assume for a contradiction that
M,w |=v ¬Ki¬Kiϕ. Then there is some w′′ such that w ∼i w′′ and M,w′′ |=v Kiϕ,
as ¬Ki¬Kiϕ and PiKiϕ are equivalent. As w ∼i w′′ and w ∼i w′ it follows by
the assumption of euclideaness that w′′ ∼i w′. As M,w′′ |=v Kiϕ, it hence follows
that M,w′ |=v ϕ, and a contradiction is reached. It is therefore concluded that
M,w |=v Ki¬Kiϕ, to the effect that M,w |=v ¬Kiϕ → Ki¬Kiϕ. As M was
arbitrary, 5 is valid in the class EQn,σ.
It is concluded that T and 5 are both valid in the class EQn,σ, and the results is

therefore proven.

To avoid cumbersome notation, for the following completeness proof, a notational
shorthand will be used: the canonical relation ∼S5n,σ

i will be written ∼∗i .

71



Chapter 4 Many-Sorted Modal Logic

Theorem 4.5 (S5n,σCompleteness). The logic S5n,σ is complete with respect to
the class EQn,σ.

Proof. By the Canonical Model Theorem, the only thing required is to show that
the accessibility relations in the class of canonical models for S5n,σ are equivalence
relations. This is done in two steps: first they are shown to be reflexive, using the
axiom T. Second, they are shown to be euclidean, using axiom 5.
Reflexive. Let Ω be any S5n,σ-consistent set of formulas, and let MS5n,σ

Ω the
canonical model for this set, as specified in Definition 4.27. Let w be a state of this
model, and assume that Kiϕ ∈ w. As w is a S5n,σ-MCS, it contains T: Kiϕ → ϕ.
By the consistency requirement, ϕ ∈ w. As ϕ was arbitrary, it can be concluded by
the definition of ∼∗i (i.e. ∼

S5n,σ
i ) that w ∼∗i w. As ϕ, w and i were chosen arbitrarily,

it can be concluded that all accessibility relations in MS5n,σ
Ω are reflexive. As Ω was

arbitrary, the class of canonical models for S5n,σ is reflexive.
Euclidean. Let Ω and MS5n,σ

Ω be as above, and assume that w0, w1 and w2 are
states in MS5n,σ

Ω such that w0 ∼∗i w1 and w0 ∼∗i w2, for some i ∈ I. It will be shown
that w2 ∼∗i w1.
Notice that Piψ → KiPiψ is an instance of 5 using the definition of Pi and

ϕ := ¬ψ. Now, let ϕ be some formula such that ϕ ∈ w1. By Lemma 4.7 this implies
that Piϕ ∈ w0. As w0 is a S5n,σ-consistent set, Pi → KiPiϕ ∈ w0. Utilizing modus
ponens, this implies that KiPiϕ ∈ w0. By the definition of ∼∗i and the assumption
that w0 ∼∗i w2, it follows that Piϕ ∈ w2. Hence, by Lemma 4.7, w2 ∼∗i w1.
As Ω and M

S5n,σ
Ω in both cases were chosen arbitrarily, it is concluded that the

accessibility relations of any M
S5n,σ
Ω model is reflexive and euclidean. Hence the

class MS5n,σ of S5n,σ canonical models is included in the class of EQn,σ, and the
result is shown.

Corollary 4.2 (QS5 Completeness). The logic QS5 is sound and complete with
respect to the class CQEL.

Proof. If based on the same language Ln,σ, the logic QS5 is equal to the logic S5n,σ
with σ̄ = {σ}, where σ is a non-rigid sort. By Theorem 4.4 and Theorem 4.5, it
is therefore sound and complete with respect to the class EQn,σ. Soundness with
respect to CQEL follows as each CQEL model is based on an EQn,σ frame. Completeness
follows as as each CQEL model is based on an EQn,σ frame, why Γ |=EQn,σ̄ ϕ implies
Γ |=CQEL ϕ for all sets of formulas Γ and formulas ϕ of Ln,σ. Hence, for same Γ and
ϕ, Γ |=CQEL ϕ implies Γ `S5n,σ ϕ.
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5 Modeling Lexical Competence
In order to construct a formal theory of semantic competence, a formal counterpart
to Marconi’s structure of lexical competence (SLC) as presented in section 2.2.3
is constructed, validated and explored. This is the topic of this chapter, and is
done as follows. In section 5.1, some simplifying assumptions regarding the SLC
are made, and an overview of the model is presented. In section 5.2, the QEL
framework is extended to accommodate the addition of a word lexicon. Once the
model is constructed, the topic turns to two issues of validation. One is to ensure
proper correspondence between the elements of the conceptual and formal theories,
and the second is to show property conservation. In section 5.3, the first issue is
undertaken. The three ontologies of Marconi’s conceptual theory are identified in
the formal model, both semantically and syntactically, and various properties are
discussed in relation to QEL. The conclusion is that proper formal counterparts to
the ontologies are present. The second validation issue is discussed in section 5.4,
where the three competence types are identified. It is shown that the dissociation of
these competence types are conserved in the model. The model therefore preserves
all essential elements of Marconi’s theory, but in a proper formal framework. In
section 5.5, this formal framework is investigated, focusing on topics not discussed
by Marconi.

5.1 Overview and Simplifying Assumptions
To model SLC, a stronger framework than quantified epistemic logic is required.
The reason for this is the dissociation of the semantic lexicon and word lexicas, as
expounded in section 2.2.3. In particular, if the word lexicas were removed from
SLC, so this represented only a conceptual model of agents cognition and the world,
the QEL framework would be sufficient, and could even be seen to give a more
detailed analysis of this structure in terms of knowledge. Adding the word lexicas
requires an additional aspect not included in QEL.
The strategy for modeling SLC is as follows. First, attention is restricted to

objects, semantic lexicas consistent of objects and word lexicas including only un-
ambiguous proper names. In the same vein, the entries in the semantic lexicon will
consist only of individual concepts.
Regarding real-world objects, these will correspond on the semantic side to objects

in the domain of quantification. On the syntactic side, objects are thus represented
as the ordinary constants and variables. The entries in a semantic lexicon will be
represented by the agents individual concepts. A formal definition of the individ-
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ual concepts is given on the semantic level, and it is shown how this can be ex-
pressed syntactically. The semantic counterpart to individual concepts are termed
object indistinguishability classes. As QEL cannot accommodate the word lexica,
the framework will be augmented with an additional sort of constants and variables
functioning as a word lexicon. To match these semantically, an additional domain
is introduced. This domain is interpreted as a catalog of proper names.
As mentioned in section 2.2.3, two word lexica are included in SLC, but more

could readily be incorporated. Hence, the number of word lexica included is not
a critical aspect of the structure. To simplify the modeling process and the model
itself, the focus will be on a structure restricted to only containing one word lexicon.
It will further be assumed that the agents are able to distinguish between different
word types, i.e. that they are syntactically competent with respect to the words in
the lexicon. Hence, whenever an agent is presented with two name tokens of the
same type of name, the agent knows that these are tokens of the same name type.
Identity between name tokens are interpreted stating that the tokens belong to the
same type. Figure 5.1.1 illustrates the simplified SLC1 and the formal apparatus
corresponding to each module, which will be defined below.2
The content of the single word lexicon will be restricted to only consist of proper

names. As will be expounded below, the words in the lexicon will have a formal first-
order counterpart. In the case of proper names, this counterpart will be first-order
constants. These word terms will be assigned Millian meaning by a mapping to the
set of object terms. If verbs were included in the word lexicon, these would have
predicates as their formal counterpart, and the mapping assigning meaning would
have to be to the set of relation symbols. On the semantic side, this would require
a mapping to the power set of the object domain. In order to express identity in
meaning between verbs, second-order identity would hence be required. Thus, the
word lexicon will not include a word for the natural language term equivalent to
identity, i.e. “is”. To stay within a first-order framework only proper names are
included in the word lexicon. This does limit the model quite severely, in particular
regarding aspects of inferential competence, but will still result in a theory capable
of providing interesting insights. In particular, in order to analyze Frege’s puzzles,
this is sufficient.
The structure of this chapter is as follows: in section 5.2, the QEL framework will

be augmented with an additional sort of constants and variables to represent the
word lexicon. Additionally, a meaning function is defined in order to assign meanings
to the proper names of the word lexicon. In section 5.3, the augmented structure
will be compared to the SLC. Object indistinguishability classes are defined and dis-
cussed. In section 5.4, the competence types described by Marconi are identified in
the formal framework and it is shown that they a dissociated. Finally, in section 5.5,
selected validities of the augmented framework are reviewed and discussed. As cer-

1In the following, when talking about the structure of lexical competence, reference will be to
this simplified version.

2The figure is slightly misleading, but illustrative.
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Simplified SLC Model

Word Lexicon

7−→

Semantics:
Nam = {ṅ1, ṅ2, ..., ṅk}
Syntax:
LEX = {n1, n2, ...}

Semantic Lexicon

7−→

Semantics:
Ca,wi = {d′ : d ∼a,wi d′}
Syntax:
Cai (b) iff Pi(a = b)

Objects
7−→

Semantics:
Obj = {d1, d2, ...}
Syntax:
CON = {a, b, ...}

Figure 5.1.1: Simplified SLC and to be defined formal model. The word lexicon is modeled by
adding to QEL a domain of names to the semantics and an additional sort to the syntax. The
semantic lexicon is represented by indistinguishability classes of objects, and a modal concept
predicate can be defined. Objects are modeled as in QEL.

tain implicational relationships exist between conjunctions of competence types, a
hierarchy of competence levels is discussed. The reader not interested in this aspect
may choose to skip this discussion as it is not used later, but included only for it’s
own sake.

5.2 Augmenting Quantified Epistemic Logic
In the following, the QEL framework will be extended. First, the language of QEL
will be extended to a language L2QEL. Secondly, the class of QEL models is extended
to construct a class of models with two-sorted domains. The augmented framework
is denoted 2QEL.
In order to model the word lexicon as separate from the semantic lexicon and real-

world objects, a new sort of terms is introduced. As the exposition is limited to only
one lexicon, only one additional sort will be introduced. The logic will therefore be
two-sorted. The first sort, denoted σOBJ , is that used in QEL, and denotes objects.
σOBJ is the sort consisting of CON and V AR from QEL. The newly added sort σLEX
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has constants LEX and variables V ARLEX .3 The details are presented below.
In order to add further word lexica, more rigid sorts should be added to the syntax,

and the semantics and axiom system should be extended accordingly.
In this section, the additional sort will be introduced in the syntax, and a matching

semantics will be given. As the formal interpretation of the constants of the second
sort will be different from that of QEL, axioms are shortly mentioned and discussed,
and completeness is shown.

5.2.1 Syntax and Semantics
In order to model the SLC, a proper language for doing so will be defined. This is
done by extending the language of QEL with an additional sort. This means making
a move to two-sorted epistemic logic. The sort used in chapter 3 will be denoted
σOBJ – the object sort. This has constants CON and variables V AR. The set of
object terms is denote TEROBJ , which includes both CON and V AR.
The newly added sort is denoted σLEX , as this represents lex ical items. The set

of σLEX constants is
LEX = {n1, n2, ...}

and the set of σLEX variables is

V ARLEX = {ẋ1, ẋ2, ...} .

The set of lexical terms is denoted TERLEX , and LEX ∪ V ARLEX ⊆ TERLEX .
The lexical terms is interpreted as name tokens (see below).
As mentioned in section 2.2.3, no reasoning occurs in the word lexicon, and no

relations between the lexical items exist. In order to capture this feature, the mod-
eling language will be restricted to include only predicates and relations for object
terms. The only relation included for lexical terms is identity, as this is required for
modeling syntactical competence, as explained below. This restriction results in the
following definition of the modeling language:

Definition 5.1 (Modeling Language L2QEL). The modeling language L2QEL con-
sists of

1. Two sorts, σOBJ and σLEX , with assigned constants and variables as above.

2. A set REL of relation symbols. Each has an arity n ∈ N and takes n arguments
from TEROBJ .

3. The identity symbol =.

4. A function symbol µ of sort σLEX 7−→ σOBJ .

5. Logical connectives, operators and quantifiers as in LQEL. J

3In the terminology of the previous chapter, the logic used is QS5n,σ, where σ = {σOBJ , σLEX}
where σLEX is a rigid sort.
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The inclusion of the the function symbol µ has so far gone unmentioned. The func-
tion is interpreted as a meaning assigning function, used to model Millian meaning
(see below). The function assigns to each lexical term t an object term µ(t). Hence,
where t ∈ TERLEX it is required that µ(t) ∈ TEROBJ .
Using Definition 5.1, the well-formed formulas of L2QEL may now be defined as

follows:

Definition 5.2 (L2QEL Well-Formed Formulas). Define the set of L2QEL well-
formed formulas by

1. Where t1, t2 ∈ TERLEX ∪ TEROBJ , the expression (t1 = t2) is an atomic
L2QEL well-formed formula.

2. Where R is a n-ary relation symbol and t1, ..., tn ∈ TEROBJ , R(t1, ..., tn) is an
atomic L2QEL well-formed formula.

3. All atomic L2QEL well-formed formula are L2QEL well-formed formulas.

4. Where ϕ and ψ are L2QEL well-formed formula, x ∈ V AR ∪ V ARLEX and
i ∈ I, the following are L2QEL well-formed formulas

¬ϕ|ϕ ∧ ψ|∀xϕ|Kiϕ.

J

Turning to the semantics, the structure of the CQEL models defined in section 3.2.2
must be augmented with an additional domain, consisting of name types. This
domain is denoted Nam. The models will also contain an object domain with the
same interpretation as the domain in QEL. This domain is denoted Obj. To simplify
the truth clauses for quantification, the union of the two is referred to simply as the
domain, denoted Dom.

Definition 5.3 (2QEL Domains). The 2QEL domains consists of two disjunct sets

1. The name domain is a non-empty finite set, Nam = {ṅ1, ṅ2, ..., ṅk}.

2. The object domain is a non-empty countable set, Obj = {d1, d2, ...}.

and their union, the domain, Dom = Nam ∪Obj. J

The name domain is interpreted as consisting of name types, in contrast to the set
of lexical terms, which are interpreted as name tokens. The setNam can therefore be
seen as the agents’ dictionary: it contains one entry for every type of word available.
The name domain is further assumed finite so agents with bounded resources are
able to learn all the entries, see e.g. (Davidson, 1984).4 Recall that in QEL models,

4Note: in the multi-agent case, the added domain will be common knowledge among all agents,
an unrealistic default assumption. Hence the assumptions of a finite size may seem irrelevant as
the domain is known due to the constant domain assumption, but as it is a common assumption
in the philosophy of language, it will be implemented here, too.

77



Chapter 5 Modeling Lexical Competence

the elements of the domain is thought of by the agents as objects, not names of such.
Adding the name domain introduces names for such objects.
In order to assign values to both object and lexical terms, the interpretation

function of QEL must be extended. The interpretation I must assign object con-
stants values in the object domain, and lexical constants values in the name domain.
Finally, the interpretation must assign a function on the domain to the meaning
function symbol.
Definition 5.4 (2QEL Interpretation). Define the 2QEL interpretation to be a
map I where

1. I assigns to each n-ary relation symbol and world a n-ary relation on Obj, i.e.

I : RELn ×W −→ P(Objn)

2. I assigns to each object constant and world an element in the object domain,
i.e.

I : CON ×W −→ Obj

3. I assigns surjectively to each name constant an element in the name domain,
i.e.

I : LEX −→ Nam

4. I assigns to the function symbol µ a function from Nam to Obj, relative to
each world, i.e.

I : {µ} ×W −→ ObjNam

J

The first two clauses in this definition are equivalent to the QEL case, but the two
last deserve comment. Regarding (3), notice then that the assignment of names to
lexical items is not world relative. This requirement is to make sure that the agents
are syntactically competent with respect to their vocabulary, i.e. that they are
able to distinguish names from one another. The requirement is warranted with the
interpretation of the constants of LEX as tokens of names and the elements of Nam
as types, and syntactical competence with a given name understood as the knowledge
of the identity of two tokens of the same name. For then the semantics validate that
whenever n1 = n2 it follows that Ki (n1 = n2). Such identity statements between
names do not convey any information regarding the meaning of the names. Rather,
they express identity of the two signs. Hence, the identity ‘London = London’ is
true, where as the identity ‘London = Londres’ is false – as the two first occurrences
of ‘London’ are two tokens of the same type, whereas the ‘London’ and ‘Londres’
are occurrences of two different name types, albeit with the same meaning. That I
is assumed to be a surjective function from LEX to Nam is assumed so each name
type has at least one name token.
In relation to (4), two important assumptions are explicitly made regarding the

meaning assigning function, µ. The first is that meaning is assigned by a function,
and the second is that the assigned meaning is world-relative. Both require comment.
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Meaning assigned by a function In order to investigate the theory of Millian
meaning, this theory must be embedded in the formal framework. This is simple
due to the simplicity of the Millian theory: all it takes is for each name to be assigned
a referent. As mentioned shortly in section 2.1.1, reference is typically assigned by
some theory of reference. Such a theory has the role of clarifying the nature of
the reference relation, being the relation by which names get their reference. The
theory of reference utilized can for present purposes be “black boxed” as the present
purpose does not involve evaluating the internal structure of theories of reference.
The only assumption made regarding the reference relation is that it is in fact a
function. This assumption is made since it is easier to work with unambiguous
proper names. Assuming that referents are assigned by a function ensures exactly
this: that each name is assigned exactly one referent, i.e. one meaning. Particularly,
it is not assumed that µ is injective, as it is essential to be able to have co-referring
terms.5
On the syntactic level, this is accomplished by adding the unary meaning function

µ of arity σTER 7−→ σOBJ . That is, µ assigns to each lexical term a meaning from
the object terms. From the viewpoints of the agents, µ assigns an object to each
name. On the semantic level, µ is assigned a function from Nam to Obj, relative to
each world. This assumption is discussed below.
Adding meaning in this way is contrary to the viewpoints of Marconi. He explicitly

states that “in [his] picture, meanings are nowhere to be found” (p. 81). Marconi
does not include meanings as a matter of philosophical conviction, but his theory of
lexical competence is compatible with an inclusion of such.

Meaning assigned world-relatively On the semantic level, the reference map is
defined world relatively, as illustrated in figure Figure 5.2.1. This means that the
value µ (n) for n ∈ LEX can change from world to world. Hence, names are assigned
values relative to epistemic alternatives.
The primary reason for assigning names relative to epistemic alternatives is that

agents should not know the meaning of terms by default. In order to model that
agents can be uncertain regarding the meaning of a term, the meaning must be able
to change across the epistemic alternatives. If the meaning function was constant
across all worlds, the agents would by default be able to identify the referent of
every name. As this ability is a type of competence, it should be possible that the
agents lack this knowledge. Hence, the meaning is assigned relative to epistemic
alternatives.
That meaning is assigned world-relatively may seem to clinch with the common

assumption in the philosophy of language after (Kripke, 1980) that names refer
rigidly. That a name refers rigidly, or is a rigid designator, means that the name
refers to the same object in all metaphysically possible worlds, cf. (Lycan, 2006).
However, the world-relative meaning assignment does not clinch with this assump-

5It could be assumed that µ was a partial function, in order to allow for empty names. In order
to not complicate matters, this is not done here.
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w  1 n            1

n            2

a            

b            

µ            
n            1

n            2

a            

b            
µ            

w  2

Figure 5.2.1: The meaning function µ is defined world relatively, i.e. the meaning of a name
may shift across epistemic alternatives. In the portrayed model, the meaning of n1 is constant,
but n2 denotes a in w1 and b in w2.

tion as the worlds over which the meaning varies are epistemic alternatives. These
epistemic alternatives may be metaphysically impossible, without the agents know-
ing them to be so. The epistemic alternatives can deviate from the actual world in
any logically possible way6. Only the actual world is assumed to be metaphysically
possible. Across this singleton set, the function is always constant (trivially), and
hence the names are rigid designators.
To be able to more succinctly refer to the semantic equivalent of µ(n), when

(ṅ, d) ∈ I (µ,w) and I(n) = ṅ, this will be written I(µ(n), w) = d. That is,
I(µ(n), w) = d states that d is the referent of ṅ at w.
Returning to the definitions of 2QEL semantics, the notion of a 2QEL model may

now be defined. With the primary extensions given by the definitions above, the
2QEL models may now be defined as follows:

Definition 5.5 (2QEL models). A 2QEL model M is a quintuple

M = 〈W, (∼i)i∈I , Dom, I〉

whereW and (∼i)i∈I are as in the QEL case, Dom = Obj∪Nam is a 2QEL domain as
defined in Definition 5.3, and I is a 2QEL interpretation as defined in Definition 5.4.
Where M is a 2QEL model 〈W, (∼i)i∈I , Dom, I〉 and w ∈ W , the pair (M,w) is

a pointed 2QEL model.
The class of 2QEL models is denoted C2QEL. J

In order to assign truth-conditions to the formulas of L2QEL, the variables needs
to be assigned extensions. Since and additional sort of variables has been added,
the definition of the valuation must be altered to take these into account.

Definition 5.6 (2QEL Valuation). A 2QEL valuation is a map

v : V AR −→ Obj

v : V ARLEX −→ Nam

J

The valuation assigns extensions to the variables of L2QEL. Specifically, it ensures
that the object variables of V AR are assigned values in the object domain, Obj, and

6Based on the present axiom system.
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that the lexical variables in V ARLEX are assigned values in the name domain, Nam.
The definition of an x-variant of a valuation v is identical to the QEL case.
The definitions of QEL truth-conditions can be altered to include formulas with

lexical terms. The truth-conditions are to a high degree identical to the QEL truth-
conditions. In fact, the only aspect that needs altering is the truth-conditions for
atomic formulas. These can be defined as follows:

Definition 5.7 (Truth-Conditions for 2QEL atomic formulas). Where (M,w)
is a pointed 2QEL model with interpretation I and v is a 2QEL valuation, the
satisfaction relation |= for atomic formulas is given by the following clauses:

M,w |=v P (t1, t2, ..., tn) iff (d1, d2, ..., dn) ∈ I (P,w)
M,w |=v (t1 = t2) iff d1 = d2

where di =


v (ti) if ti ∈ V AR
v (ti) if ti ∈ V ARLEX

I (w, ti) if ti ∈ CON
I (ti) if ti ∈ LEX

for i ∈ {1, 2, ...}
J

The truth-conditions for the remaining formulas are as stated in section 3.2.2, with
all modifications mentioned here in effect. In particular, recall that in the two-sorted
version, Dom = Nam ∪Obj.
Notice that in the given syntax and semantics of 2QEL, identity can be stipulated

between a name and an object. Such identities will always be false, as the two sets
are disjoint at the semantic level, and hence items from LEX and CON will never
be interpreted as the same object in Dom.
This concludes the model-theoretic definitions of the 2QEL framework. This

framework will be used as the foundation for a model-theoretic modeling of Mar-
coni’s SLC. Still, in order to provide a logical theory, a logic based on the 2QEL
models must be defined.

Definition 5.8 (The Logic L2QEL). Define the logic L2QEL by

L2QEL = {ϕ ∈ L2QEL : M |= ϕ for all M ∈ C2QEL}

J

The definition states that the logic L2QEL consists exactly of the formulas valid in
all 2QEL models. This is a logic defined from the semantic viewpoint. From this
definition, a formula may be determined as being in the logic by showing that it is
a C2QEL validity. If a C2QEL model exists in which the negation of a formula ϕ can
be satisfied, it can then be concluded that ϕ is not a theorem of L2QEL.
In order to provide a set of axioms and inference rules from which exactly the

theorems of L2QEL can be deduced, the following section introduces a selection of the
appropriate axioms. For the full list, the reader is referred to the previous chapter.
The axioms presented below correspond to important features of the 2QEL models.
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5.2.2 Axioms
With respect to providing a complete axiomatization for L2QEL, the main difference
between QEL and 2QEL is that the latter includes a set of terms which are rigid
by definition, namely the set TERLEX . All QEL axioms are valid in 2QEL models,
but the axioms restricted to variables in the earlier case are now valid for variables
ẋ ∈ V ARLEX and terms t, t′ ∈ TERLEX . This means that the following, stronger
versions7 of the QEL axioms UI, PS and KNI must be included in the axiomatic
base for L2QEL:

UI∗ ∀ẋϕ→ ϕ (t/ẋ)
PS∗ (t = t′)→ (ϕ (t)↔ ϕ (t′))
KNI∗ (t 6= t′)→ Ki (t 6= t′)

As the set TERLEX consists of rigid terms, the system of identity used is incontin-
gent. This implies that, for t ∈ TERLEX , truth is preserved by the classic version
of Existential Generalization:

ϕ (t)
∃ẋϕ (ẋ)

This rule of inference is redundant by the addition of UI∗, but nicely illustrates
differences between the non-rigid object constants and the rigid lexical constants.
For the former, the rule fails to preserve truth, whereas for the latter, the rule
does preserve truth. Where ϕ(t) is the formula Ki(t = t1) the rule can be used to
illustrate an important difference between the two identity systems. Where t is an
object term, it does not preserve truth to conclude that ∃xKiϕ(x) – i.e. it cannot
be concluded that i can identify t1, as was discussed in section 3.2.3. On the other
hand, where t is a lexical constant, it can be concluded that ∃ẋKi(ẋ = t1) – i.e. i can
identify the name t1. The truth of the latter is a feature of syntactical competence:
where i knows that two name tokens are of the same type, the specific name can be
identified.
Another feature of syntactical competence is embodied in the derivability of the

formula Knowledge of Identicals

KI∗ (t = t′)→ Ki(t = t′)

KI∗ states that for all lexical terms t, t′ ∈ TERLEX , if such two are tokens of the
same name, then any agent knows this by default. In conjunction with Existential
Generalization this implies that, by default, all agents always know that two name
tokens of the same type are of the same type, and they are able to identify this type.
Hence, agents can distinguish and identify all names.

7The following axioms are inspired by inspired by (Hughes and Cresswell, 1996, p. 241-244,
312-314).
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Completeness The axioms above does not constitute all the required axioms for
completeness. A complete axiom system can be found in section 4.6 on page 70.
The axiom system presented there results in a logic denoted S5n,σ. Where S5n,σ
is based on the language L2QEL such that σ = {σOBJ , σLEX}, S5n,σ is sound and
complete with respect to the class of 2QEL models, C2QEL:

Theorem 5.1 (QS5 Completeness). The logic S5n,σ based on language Ln,σ with
σ = {σOBJ , σLEX} is sound and complete with respect to the class of 2QEL models,
C2QEL.

Proof. By Theorem 4.4 and Theorem 4.5, S5n,σ is sound and complete with respect
to the class EQn,σ. Soundness with respect to C2QEL follows as each C2QEL model is
based on an EQn,σ frame – i.e. everything valid in the class of frames is also valid in
the class of models based on those frame. Completeness also follows from the fact
that each C2QEL model is based on an EQn,σ frame. This entails that Γ |=EQn,σ̄ ϕ
implies Γ |=C2QEL ϕ for all sets of formulas Γ and formulas ϕ of Ln,σ. Hence, for same
Γ and ϕ, Γ |=C2QEL ϕ implies Γ `S5n,σ ϕ.

A consequence of Theorem 5.1 is that the model-theoretically specified logic L2QEL
specified above and QS5n,σ are identical.

Corollary 5.1. Where σ = {σOBJ , σLEX}, QS5n,σ = L2QEL.

Proof. Theorem 5.1 implies that, for any L2QEL formula ϕ, ϕ is QS5n,σ provable iff
it is C2QEL valid. As L2QEL is defined as the set of C2QEL valid formulas, the result
follows.

The content of the completeness proof is that any formula can be shown to be
valid in C2QEL if, and only if, it is provable in the formal logical theory. This means
that the model-theoretic approach can be utilized to decide whether or not a given
formula is a theorem of the theory. Hence, if the model-theoretic construction in this
section can be argued to be a fair modeling of the SLC, the completeness theorem
above ensures that a completely specified formal logical theory has also been found.
There has not, however, been presented any arguments to the effect that the 2QEL

framework is a proper modeling of the SLC. That is, the model has so far not been
validated. In the following two sections, the topic turns to validation. First, the
2QEL framework is compared to the ontologies of the SLC, and it is shown that
the framework implicitly includes proper correlates of these ontologies. Second, in
section 5.4, the competence types of the SLC is identified in the formal model and
it is shown that the formal competence types possess the properties required to be
consistent with empirical studies.

5.3 Ontology Comparison
As the reader will recall from section 2.2.3, Marconi’s structure of lexical competence
includes three ontologies for an agent: real-world objects, the semantic lexicon and
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the two word lexicons. The first of these, the real-world objects, are easily modeled.
These are represented on the semantic level by the objects of the object part of the
domain, Obj, and on the syntactic level by the σOBJ terms.
Regarding the semantic lexicon and the word lexicon, then the 2QEL framework

defined does include the information for modeling these, but the appropriate struc-
tures are only implicitly included. In this section, the relations and classes are
defined from the indistinguishability relation in order to extract notions befitting of
the semantic lexicon and the word lexicon from 2QEL models. This is done primarily
model-theoretically, but the obtained classes are related to the syntactic approach
as well. Their properties are discussed throughout.
The section can be seen as a validating stepping stone between the SLC and the

2QEL framework: the ontologies from Marconi’s conceptual theory is correlated one-
to-one with mathematical structures, and it is shown how these relate to the 2QEL
framework. After this section, little reference will be made to these structures, as
the relevant properties are expressible in the logic.

5.3.1 Semantic Lexicon
In the SLC the semantic lexicon consists of the agent’s concepts, his mental repre-
sentations of the objects that surround him, and the relations between them. As
the focus here is limited to word lexicon consisting of proper names, the focus on
the corresponding semantic lexicon will be on single objects. Therefore, an agent’s
semantic lexicon will be a set consisting of individual concepts. These individual con-
cepts are defined using the main epistemological notion from the QEL framework,
namely indistinguishability. In order to apply the notion of indistinguishability to
objects rather than worlds, an object indistinguishability relation is defined. This is
then utilized to define individual concept classes. These concept classes each repre-
sent an entry in the semantic lexicon, and consist of all the object indistinguishable
for some agent by some feature. Finally, the semantic lexicon is defined as the set
containing all such classes.
The object indistinguishability relation ∼a,wi has three parameters: i, a and w.

First, the agent i. Second, the feature by which the related objects are indistinguish-
able, here a, and finally the world in which this is the case, w. Where d1 ∼a,wi d2
this is read ‘in state w, i cannot distinguish d1 from d2 by virtue of being a’, for
example by virtue of being ‘my brother’. The relation is defined thusly:

Definition 5.9 (Object Indistinguishability Relation). Let a ∈ CON , w ∈ W
and i ∈ I. Then agent i’s object indistinguishability relation for a at w is a binary
relation ∼a,wi on Obj given by

d ∼a,wi d′ iff I (a, w) = d and ∃w′ ∼i w : I (a, w′) = d′.

J
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An example is given after the next definition.
Though defined using ∼i, the relation is not an equivalence relation, as reflexivity

fails for d and ∼a,wi if I (a, w) 6= d. Still, the relation can be used to define a
set of classes on the domain. These classes represent objects from the domain
indistinguishable to one another by the given feature. Hence, each class consists
of the objects falling under some mental heading for the given agent and therefore
represents the objects in the agent’s individual concept of the feature. These classes
are the formal counterparts in the semantics of 2QEL to the entries in the semantic
lexicon of the SLC. These classes are defined as follows:

Definition 5.10 (Individual Concept Class). Where ∼a,wi is as specified in
Definition 5.9, agent i’s individual concept class for a at w is defined by

Ca,w
i (d) = {d′ : d ∼a,wi d′}.

J

The set Ca,w
i (d) consists of the objects indistinguishable to agent i via feature a

from object d in the part of the given model connected to w by ∼i.
To exemplify these two definitions in use, consider again the case with the two

boxes and the cat, illustrated in Figure 3.2.2 on page 43. Again let constants g, w
and c denote the grey box, the white box and the box containing the cat, respectively.
In the illustrated model, there are two worlds, w1 and w2, related by ∼i. Assume
w1 is the actual world. As agent i can identify the grey box, the interpretation of g
is constant across these worlds, i.e. I (g, w1) = I (g, w2) = d1. From this it follows
that the only object related to d1 by ∼g,w1

i is d1 itself. To see this, notice first that
d1 ∼g,w1

i d1. This follows as I (g, w1) = d1, since this satisfies the existential claim
of Definition 5.9. Second, there can be no other objects related by ∼g,w1

i to d1 as no
further worlds exist to satisfy the existential claim. Hence, the only object that i
cannot distinguish from the actual grey box, d1, by virtue of being the grey box, g,
is the grey box itself, d1. Therefore, agent i’s individual concept class for the grey
box, g, contains only the grey box itself, d1. That is, Cg,w1

i (d1) = {d1}.
As opposed to the grey box, the agent is uncertain regarding which of the two

objects is the box containing the cat. In w1, the box containing the cat, c, is d2,
i.e. I (c, w1) = d2. In w2, it is d1, i.e. I (c, w2) = d1. Utilizing Definition 5.9, it
can be seen that d2 ∼c,w1

i d2 and d2 ∼c,w1
i d1. The first case follows by the same

argument as above. The second follows as w2 satisfies the existential claim for d1 in
that I (c, w2) = d1. Hence, the objects that i cannot tell apart from the box actually
containing the cat, d2, by virtue of being the box containing the cat, c, is the white
box, d2, and the grey box, d1. Put differently, Cc,w1

i (d2) = {d1, d2}.
In Figure 3.2.2 on page 43 the agent’s individual concept classes for the grey box,

the white box and the box concealing the cat are illustrated as two singletons, and
one set containing both the grey and the white box.
Based on the definition of individual concept classes, the semantic lexicon for

agent i may now be defined as follows:
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Definition 5.11 (Semantic Lexicon). The semantic lexicon of agent i in the
pointed 2QEL model (M,w) with d ∈ Obj and a ∈ CON is the set

SLi = {Ca,w
i (d) : Ca,w

i (d) 6= /O}.

J

The requirement that the empty set is not included in the semantic lexicon reflects
the idea that there are no empty thoughts. It is included in order to eliminate non-
sense concepts.
In the example above, it would be the case that

SLi = {Cg,w1
i (d1), Cw,w1

i (d2), Cc,w1
i (d1), Cc,w1

i (d2)}
= {{d1}, {d2}, {d1, d2}}

The object indistinguishability relations and the individual concept classes prop-
erly reflect the notion of identifiability. The key aspect of an agent’s ability to
identify an object is that the object is singled out, in the sense that the object is dis-
tinguishable from all other objects by the agent. In order for the agent to identify an
object, the agent must have an unambiguous concept of the object. Proposition 5.1
nicely ties together the two ideas of an unambiguous individual concept and the
notion of identifiability, by stating that the given object is distinguishable from all
other objects by the object indistinguishability relation if, and only if, the agent is
able to identify the given object.

Proposition 5.1. An object can be identified if, and only if, the appropriate concept
class has cardinality 1, i.e.

M,w |=v ∃xKi(x = a) (5.3.1)

if, and only if,
|Ca,w

i (d)| = 1

Proof. (5.3.1) holds iff I is constant for a across all w′ such that w ∼i w′. This is
the case iff d is the only object such that d ∼a,wi d, which again is the case iff the
class Ca,w

i is a singleton.

The formally defined semantic lexicon nicely represents the semantic lexicon of the
SLC. Each entry in the semantic lexicon reflects the agent’s concept of an object and
the agent’s information regarding the identity of the object. Proposition 5.1 shows
that this information exactly corresponds to the criteria for identifiability from the
QEL framework. The proposition relates the semantic lexicon and an agent’s ability
regarding the real-world objects in a clear way. It therefore provides a clear criteria
for the second part of the two-stage process of application to be successful: the agent
must possess a singleton concept class of the meaning of the name in question in
order to identify the referent. This will be returned to in section 5.4 below.
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Syntactical representation In order for the syntactically represented logic to also
include the semantic lexicon, the concept classes must somehow be expressible in
the logic. A suitable notion can be defined by using a modal predicate. In order to
define the predicate, the following observation is required:

Proposition 5.2.
M,w |=v Pi(a = b) (5.3.2)

if, and only if,
I (b, w′) ∈ Ca,w

i (I (a, w))
for all w′ such that w ∼i w′ and M,w′ |=v (a = b).

Proof. Initially, M,w |=v Pi(a = b) holds only if M,w′ |=v (a = b) for some w′ such
that w ∼i w′. For such w′, the identity I (a, w′) = I (b, w′) holds. By the definition
of ∼a,wi , it follows that I (a, w) ∼a,wi I (a, w′), so I (a, w) ∼a,wi I (b, w′) by the shown
identity. By the definition of Ca,w

i (I (a, w)) it follows that I (b, w′) ∈ Ca,w
i (I (a, w)).

As all relationships used are bi-directional, the proposition is shown.

It follows from Proposition 5.2 that it is possible to define a modal predicate for
each constant a and each agent i with an extension equal to that of the agent’s
concept of a at w:

Definition 5.12 (Individual Concept Predicate). Let (M,w) be a pointed 2QEL
model, v a valuation. Then, where a, b ∈ CON and i ∈ I, define agent i’s individual
concept predicate for a by

M,w |=v C
a
i (b)↔ Pi(a = b)

J

The predicate Ca
i captures agent i’s individual concept of a at w. The predicate is

called “modal” as it is defined using a modal notion and the use of classic existential
generalization does not preserve truth when the predicate occurs in the antecedent
formula. For example doesM,w |=v Ki¬(a = b) (equivalent toM,w |=v ¬Pi(a = b))
not imply M,w |=v ∃xKi¬(x = b).
The definability of such individual concept predicates shows that the semantic

lexicon aspect of the SLC is appropriately represented in the logical theory.

Properties of the semantic lexicon The way things have been defined ensures
that the system does not exhibit an unwanted collapse between concepts. Consider
again the example of the cat and the boxes. In this case, agent i considers it possible
that both the grey and the white box is the box that contains the cat, i.e.

M,w1 |=v Pi(g = c) ∧ Pi(w = c)

Therefore the agent’s concepts of g and w have a non-empty intersection as

I (c, w1) ∈ Cg,w1
i (d1) and I (c, w1) ∈ Cw,w1

i (d2)
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by Proposition 5.2. Though the concepts overlap, this does not imply that the
classes are identical. Such a collapse of concepts would be unwanted, as the agent
is able to distinguish between the grey box and the white box, which in turn means
they should have distinct entries in the semantic lexicon. That overlapping concepts
do not imply the identity between such is the content of the following proposition.

Proposition 5.3.

M,w |=v Pi(a = b)
does not imply that

Ca,w
i (d) = Cb,w

i (d)

Proof. First, note that

Pi(a = b) ∧ Pi(b = c) ∧ ¬Pi(a = c) (5.3.3)

is a contingent formula, and hence satisfiable. Assume model M satisfies (5.3.3)
at w and that w is the required state satisfying (a = b), so for some d ∈ Obj,
I (a, w) = I (b, w) = d.
From the first conjunct in (5.3.3) and Proposition 5.2 it follows that I (b, w) ∈

Ca,w
i (d) and I (a, w) ∈ Cb,w

i (d). The second conjunct and Proposition 5.2 implies
that I (c, w′) ∈ Cb,w

i (d), for some w′ such that w ∼i w′. From the assumption
that Ca,w

i (d) = Cb,w
i (d), a contradiction may now be derived. Since this assumption

implies that I (c, w′) ∈ Ca,w
i (d). But by Proposition 5.2, this entails that M,w |=v

Pi(a = c), contrary to the assumption of (5.3.3).

Where Proposition 5.2 relates the Pi operator to object inclusion in concept classes,
the dual operator Ki can be related to the identity of concepts. In particular, if an
agent knows that two objects are identical, the agent’s individual concepts of the
objects will be the same.

Proposition 5.4. Knowledge of identity implies identity of concepts.

M,w |=v Ki(a = b)

implies
Ca,w
i (I (a, w)) = Cb,w

i (I (b, w))

Proof. Assume thatM,w |=v Ki(a = b). ThenM,w |=v a = b, and hence I (a, w) =
I (b, w), so I (b, w) ∈ Ca,w

i (I (a, w)). Now regard some arbitrary d ∈ Ca,w
i (I (a, w)).

It is shown that d ∈ Cb,w
i (I (b, w)). This is the case iff I (b, w) ∼b,wi d, by the def-

inition of concept classes. This is again the case iff ∃w′ ∼i w : I (b, w) = I (b, w)
and I (b, w′) = d, by the definition of the object indistinguishability relation. From
the assumption that d ∈ Ca,w

i (I (a, w)), it follows that ∃w′ ∼i w : I (a, w′) = d. As
I (a, w′′) = I (b, w′′) for all w′′ ∼i w by the assumption of M,w |=v Ki(a = b), it
follows that ∃w′ ∼i w : I (b.w′) = d. Hence I (b, w) ∼b,wi = d. So d ∈ Cb,w

i (I (b, w)),
why Ca,w

i (I (a, w)) ⊆ Cb,w
i (I (b, w)). The opposite inclusion is symmetric and there-

fore omitted.
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Notice that the implication in the above is not bi-directional. That the opposite
implication does not hold is a wanted feature of the system since the agent may have
completely overlapping concepts because the agent possesses too little information.
Again returning to the cat in the box example, consider the case where i is blind-
folded. In this case, i cannot distinguish any of the boxes from each other8, and all
three individual concepts therefore completely overlap. In this case, the agent should
not know that the grey and the white box are the same. This example provides the
intuition behind the proof for the following proposition:

Proposition 5.5. Identity of concepts does not imply knowledge of identity.

Ca,w
i (I (a, w)) = Cb,w

i (I (b, w))

does not imply
M,w |=v Ki(a = b)

Proof. Assume that Ca,w
i (I (a, w)) = Cb,w

i (I (b, w)) and that d ∈ Ca,w
i (I (a, w)) =

Cb,w
i (I (b, w)). Then ∃w′ ∼i w : I (a, w′) = d and ∃w′′ ∼i w : I (b, w′′) = d. For

M,w |=v Ki(a = b), it must be the case that I (a, w∗) = I (b, w∗) for all w∗ ∼i w. A
counterexample to this is provided by the following model. LetM = 〈W, (∼i)i∈I , I〉,
where W = {w,w′} and w ∼i w′, with the interpretation of constants a and b as
given by the following table:

w w′

a d d′

b d′ d

Here, Ca,w
i (I (a, w)) = {d, d′} = Cb,w

i (I (b, w)), but M,w |=v ¬Ki(a = b).

5.3.2 Word Lexicon
The word lexicon is represented in a similar way to the semantic lexicon. On the
semantic side, the word lexicon of agent i is represented by classes on the name part
of the domain, Nam. Each such class will be a singleton set, by the assumption of
syntactic competence. This precisely reflects the assumption that each agent is able
to distinguish between all name types, i.e. have an unambiguous individual concept
of each type. These equivalence classes may be obtained by the following definition:

Definition 5.13 (Name Class). Where ṅ ∈ Nam and n ∈ LEX, agent i’s name
class for n is

Cn
i (ṅ) = {ṅ′ : I (n) = ṅ′}

J

8By virtue of being grey, white or containing the cat.
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The definition is simpler as the interpretation of names is not world relative.
That the defined classes exhibit the intended properties is captured by the following
proposition.
Proposition 5.6. For all ṅ ∈ Nam, Cn

i (ṅ) form a singleton equivalence class and
the set {Cn

i (ṅ) : ṅ ∈ Nam} form a partition on Nam.
Proof. First, to see that ∪ṅ∈NamCn

i (ṅ) = Nam, recall that for all ṅ ∈ Nam there
is some n ∈ LEX such that I (n) = ṅ by the definition of I. So each name is an
element of a class. As all ṅ ∈ Nam are in some class, the union of these classes
contain all ṅ ∈ Nam. Secondly, that Cn

i (ṅ) is a singleton for each ṅ ∈ Nam
can be argued as follows. Assume that ṅ, ṅ′ ∈ Cn

i (ṅ). Then, for some n′ ∈ LEX,
I (n′) = ṅ′. So I (n′) ∈ Cn

i (ṅ). Hence, by the definition of Cn
i (ṅ), it follows

that I (n′) = ṅ, and it can be concluded that ṅ′ = ṅ, why Cn
i (ṅ) is a singleton set.

Singletons are obviously either disjunct or identical, why the statement is proven.

That all name concepts for any agent are singleton sets reflects the validity of the
KNI axiom for lexical terms, as mentioned in section 5.2.2. The KNI axiom can be
re-written as

(t 6= t′)→ ¬Pi(t = t′).
The axiom states that if two name tokens are not instances of the same name type,
these names will not be in the same concept class. The framework thus nicely
captures that the agents are syntactically competent with respect to all words in
Nam. Again, this is an aspect not discussed by Marconi.
A modal predicate with an extension equal to the concept class of a name type

can easily be defined using the same approach as for the semantic lexicon. As it will
not be used, the definition is omitted.
It should be noted that the assumption is false for certain groups of human agents

– an example could be people with impaired hearing, who may not be able to
identify which name was uttered in a given context. In order to model such lacking
phonetic competence, one should allow for possible falsity of KNI and hence opt for
a contingent identity system of names.
From Definition 5.13, the word lexicon for agent i is defined as the set of all word

classes:
Definition 5.14 (Word Lexicon). The word lexicon of agent i in the pointed
2QEL model (M,w) with ṅ ∈ Nam is the set

WLi = {Cn
i (ṅ) : n ∈ LEX}.

J

5.3.3 Closing Remarks
The formal version of the semantic lexicon, SLi, and the word lexicon, WLi, along
with their constituting classes will not be used much in any explicit form. The in-
dividual concept classes and the name class constituting SLi and WLi were defined
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from the indistinguishability relation from the 2QEL models. Further, the properties
most interesting for the present work, such as concept inclusion and object identifi-
cation, were seen to be expressible in the language L2QEL. Hence, explicit reference
to these classes and the lexica are superfluous: what is relevant from these notions
can readily be expressed in the 2QEL framework. The formal lexica were introduced
to validate ontologies of the 2QEL framework as a formal modeling of the SLC on-
tologies. This has been done. It has been shown in this section that appropriate
notions of individual concept classes and name classes constituting the semantic
and word lexica can be extracted from the 2QEL framework. The section can in this
light be seen as a stepping stone between the SLC and 2QEL, showing how the SLC
notions can be expressed using the 2QEL framework. As the relevant features are
readily expressible without making explicit reference, this stepping stone will not be
referred much to in the ensuing chapters.

5.4 Competence Types
Having identified the three ontologies present in Marconi’s theory, the competence
types over these may now be given a formal reading. In addition to referential
and inferential competence, an extra ‘competence type’ is present in the epistemic
logical framework, namely ‘worldly competence’. The aspects of this ‘competence’
are exactly those usually modeled in quantified epistemic logic and has as such been
expounded in chapter 3.

5.4.1 Referential Competence
Regarding referential competence, recall that this compromises two distinct subsys-
tems between names and objects, relating these through the semantic lexicon. The
two relations are application and naming. Regarding application, then an agent can
apply a name if when presented with a token of the name, the agent can identify
the appropriate referent. This ability can be defined as follows:

Definition 5.15 (Application). Agent i can apply name n in pointed model (M,w)
iff

M,w |=v ∃xKi(µ(n) = x) (5.4.1)

J

Recalling the reading of de re formulas (cf. (3.2.1) on page 44), the definition
literally states that agent i can identify the meaning/referent of n.
The second referential competence type is naming. To be able to name an object,

agent i is required to be able to produce a name when presented with an object, say
a. This can equally well be expressed using the same de re-type formula as in the
definition above:

91



Chapter 5 Modeling Lexical Competence

Definition 5.16 (Naming). Agent i can name a in pointed model (M,w) iff

M,w |=v ∃ẋKi(µ(ẋ) = a) (5.4.2)

J

Here, the definition states that the agent can identify a name the referent of which
is a.
As mentioned in section 2.2.3, application and naming are distinct subsystems in

the sense that an agent may loose the ability to name an object while maintaining
the ability to apply a name referring to the object or vice versa. This feature is
preserved in the 2QEL framework as neither (5.4.1) nor (5.4.2) imply one another.
This is shown in section 5.4.3 below.

5.4.2 Inferential Competence
Regarding inferential competence, the present framework is rather limited in the
features expressible. This is a direct consequence of the simplified version of the SLC
modeled. In particular, the choice of only including proper names in the word lexicon
limits the types of inferential competence to knowing relations between referring
names and not inferential knowledge regarding names and verbs. As an example,
knowledge of true subject-predicate sentences such as ‘a is P ’ cannot be expressed
as the word lexicon does not contain ‘is’ nor ‘P ’, but only a name for a.
The key notion of inferential competence modeled is therefore knowledge of the

co-reference of proper names:

Definition 5.17 (Knowledge of Co-reference). Agent i knows that names n and
n′ co-refer in pointed model (M,w) iff

M,w |=v Ki(µ(n) = µ(n′)) (5.4.3)

J

This type of inferential competence satisfies the requirement of relating entries in
the word lexicon through the semantic lexicon: where I (n) and I (n′) are elements
in two name classes from the word lexicon, I (µ(n), w) and I (µ(n′), w) are elements
from individual concept classes in the semantic lexicon. Knowledge of co-reference
implies by (Proposition 5.4) that these concept classes are identical, which then
facilitates the connection between the meaning of the two names for the agent.
Knowledge of co-reference is a special case of full inferential competence. When

the agent has knowledge of the co-reference of two names, this does not mean that he
is inferentially competent in the terminology of Marconi. Marconi’s use is holistic,
as the agent has to be able to supply a variety of synonyms and properties to be
deemed inferentially competent with respect to a name. Such a holistic notion of
inferential competence is defined as follows:
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Definition 5.18 (Full Inferential Competence). Agent i is fully inferentially
competent with respect to n in pointed model (M,w) iff

M,w |=v (µ(n) = µ(n′))→ Ki(µ(n) = µ(n′)) (5.4.4)

for all n′ ∈ LEX. J

that is, the agent is fully inferentially competent with n iff the agent knows of
every name co-referring with n that these two co-refer. The agent may, of course,
be less competent and know only of the co-reference of a strict subset of a set of
synonyms. This will be equivalent to the agent having knowledge of co-reference of
the names in the subset.

5.4.3 Dissociation of Competence Types
The three types of competence identified in (Marconi, 1997) were there found to be
dissociate. For the modeling to be able to capture the possible cases reported, it
will thus be required that the corresponding formal types of competence identified
preserve this dissociation. Accordingly, neither of (5.4.1), (5.4.2) or (5.4.3) should
imply one another. This is the content of the following four propositions.

Proposition 5.7. Application does not imply naming

Proof. Regard a model in which W = {w,w′}, w ∼i w′ and

I (µ(n), w) = I (µ(n), w′) = d

Then M,w |=v ∃xKi(µ(n) = x). That is, i can apply n.
Assume further that I (a, w) = d and I (a, w′) = d′. Then, though M,w |=v

(µ(n) = a), it is still the case that M,w |=v ¬∃ẋKi(µ(ẋ) = a)). Hence the agent
cannot name the referent of n.

Proposition 5.8. Application does not imply knowledge of co-reference

Proof. To see that (5.4.1) does not imply (5.4.3), regard the model from proposi-
tion Proposition 5.7. In this model, the agent can apply n. Make the additional
assumption that

I (µ(n), w) = I (µ(n′), w)

to the effect that M,w |=v (µ(n) = µ(n′)). Finally, assume that I (µ(n′), w′) = d′′.
Then M,w |=v ¬Ki(µ(n) = µ(n′)). The agent is still able to apply n, but does

not know that n and n′ in fact co-refer.

Proposition 5.9. Naming does not imply application nor inferential competence
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Proof. A new counter-example is constructed to show that (5.4.2) does not imply
(5.4.1) nor (5.4.3). Again, let W = {w,w′} with w ∼i w′. Let

I (µ(ẋ), w) = I (a, w) = d and I (µ(ẋ), w′) = I (a, w′) = d′

Here, (5.4.2) holds at w, whereas (5.4.1) does not.
To make (5.4.3) false at w, assume that v(ẋ) = I (n) and for a further name n′

that
I (µ(n′), w) = I (µ(n), w) and I (µ(n′), w′) = d

This provides a counter-example.

Proposition 5.10. Inferential competence implies neither application nor naming

Proof. To see that (5.4.3) implies neither (5.4.1) nor (5.4.2), let

d = I (a, w) = I (µ(n), w) = I (µ(n′), w) and
d′ = I (µ(n), w′) = I (µ(n′), w′) and
d′′ = I (a, w′) .

Then (5.4.3) is satisfied at w, whereas (5.4.1) and (5.4.2) are both false.

5.5 Further Properties
An advantage of formal theories over informal ones is that it is quite easy to de-
duce theorems and properties of the formal theory. Investigating such theorems and
properties can in turn be used to discover otherwise overlooked features of the con-
ceptual theory, provide an overview of the theory and its implicit assumptions and
yield hypotheses which can be evaluated using new empirical data. This section is
dedicated to these three ventures.
In relation to semantic competence, the most interesting features obviously regard

the knowledge agents have of words and their meanings. In order to provide an albeit
limited picture of the features of the formal theory, a selection of formulas capturing
interesting properties are now presented. As a first example, the theory entails that
any agent knows that every name has a referent. This is captured by

Ki∀ẋ∃x(µ(ẋ) = x) (5.5.1)

The validity of (5.5.1) stems from the assumption that µ is a total function. To work
with systems with non-denoting names, µ should be defined as a partial function,
and the axiom system should be modified. As (5.5.1) is a C2QEL validity, it is L2QEL-
provable.
Furthermore, the agents also know that the names of LEX are unambiguous.

This is reflected by the provability of

∀x∀y∀ẋKi((µ(ẋ) = x) ∧ (µ(ẋ) = y)→ (x = y))
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which captures that the agents know that the names of LEX are assigned unam-
biguous meaning by µ. Put differently, the agents know that the reference relation
is a function.
That µ was not assumed surjective results in the invalidity of

Ki∀x∃ẋ(µ(ẋ) = x) (5.5.2)

stating that agent i knows of every object that it is named. Only in the models
of C2QEL where µ is surjective will (5.5.2) hold. Nothing prevents such models from
being constructed, and hence (5.5.2) is C2QEL-satisfiable. It is therefore also L2QEL-
consistent.
Though the validity of (5.5.1) ensures that i knows that all names refer, it is not

assumed that the agent knows what they refer to. Unless specifically assumed, this
knowledge is not the case, which is represented by

∀ẋ∃xKi(µ(ẋ) = x) (5.5.3)

being invalid in C2QEL. This is natural as most competence types are made as
substantial assumptions: the theory should not entail that the agents are always able
to apply all names, as this would be inconsistent with empirical findings. Depending
on the agents, word lexicon and the object domain under consideration, it can
sometimes be a natural assumption: when playing cards, for example, all players
can both apply the names of and name all cards in the deck. This possibility is
consistent with the theory, in that the formula (5.5.3) is C2QEL-satisfiable, why it is
also L2QEL-consistent.
In the class of C2QEL models, it is possible to satisfy

Pi((n 6= n′) ∧ µ(n) = µ(n′))

which states that even though two names are instances of different name types,
agents may still consider it possible that they co-refer. Hence, the system allows for
the arbitrariness of sign, i.e. that there is nothing essential binding a given sign to
the object it names.

5.5.1 Further Competence Types
In (Marconi, 1997), there is not much discussion about different strengths of com-
petence. In many ways, the conceptual model is less precise than the formal theory
presented here. The difference between knowledge of co-reference (Definition 5.17)
and full inferential competence (Definition 5.18), for example, is clear in the for-
mal framework, but is not explicitly discussed by Marconi. Further, the type of
meta-competence encoded in(5.5.1) or the universal application of (5.5.3) is not
mentioned.
One very interesting property of the formal theory is an additional competence

type, which is L2QEL-provable of any agent. This is trivial competence:

95



Chapter 5 Modeling Lexical Competence

Definition 5.19 (Trivial Competence). An agent i is said to be trivially compe-
tent with n iff

Ki(µ(n) = µ(n)) (5.5.4)

J

Any agent is trivially competent with any name, as (5.5.4) is a C2QEL validity.
Thought trivial competence may seem uninteresting and trivial, the provability of

(5.5.4) captures an important implicit assumption of the 2QEL framework. What is
implied by the provability of trivial competence is that any agent has an individual
concept for the meaning of every name. Stated otherwise, for every name n ∈ LEX,
the class Cµ(n),w

a (I (µ(n), w)) is a member of i’s semantic lexicon.
As the agents are assumed to be syntactically competent and know that all names

refer, this is not an unnatural property. Still, it is not trivial, for it ensures that
there is a connection between the word lexicon and the semantic lexicon for every
name. It may be that the entry in the semantic lexicon encodes no information,
since the concept may contain the entire object domain, but the connection will still
exist.
The provability of trivial competence may seem natural if presented as follows:

(5.5.4) states that an agent always identifies the meaning of a name with the meaning
of the same name, possibly without knowing anything about this meaning. This may
be seen as what allows children to correctly, but trivially, answer many questions.
In reply to ‘who was Napoleon?’, the trivial answer ‘Napoleon’ is not wrong.
A further competence type identifiable in the formal framework is what may be

called correlation. This type results when the agent is able to correlate a name with
an non-linguistic entry in the semantic lexicon, but where the latter is not assumed
to be an unambiguous concept:

Definition 5.20 (Correlation). Agent i correlates name n with a in pointed model
(M,w) iff

M,w |=v Ki (µ (n) = a) (5.5.5)

J

The definition states that i knows that the referent of n is the object a, yet it does
not imply that i is able to identify this object. In the running example, introduce
the name Schrödinger’s Box for the box containing the cat. Then i would know that
µ(Schrödinger’s Box) was object c, without being able to identify either.
This ability is referred to as correlation since the agent correlates meaning with

concept, but possibly not concept with world. By Proposition 5.4, (5.5.5) implies
that agent i’s individual concepts of µ(n) and a are identical. Correlation is thus a
relation between word lexicon and semantic lexicon, that does not imply that the
agent can apply the name. Whether correlation should be classified as a referential
or an inferential competence type does not seem important.
Both trivial competence and correlation will be used in the analyses of chapter 6.
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5.5.2 Implications between Competence Types
As shown above, application, naming and inferential competence do not entail one
another. The concepts are closely related, and in various conjunctions, implicational
relationships arise. Of particular interest later will be those between application and
inferential competence. The following four facts capture such relationships that will
be used later on in the analyses of Frege’s puzzles.9
The first fact shows that the formal theory entails that agents are able to reason

about application and co-reference. To exemplify, imagine an agent able to apply
two co-referring names in parallel: the agent can point to the referent of n with his
left hand and to the (same) referent of n′ with his right – Fact 5.1 states that the
agent should then know that the two names co-refer:

Fact 5.1. Application of co-referring names implies knowledge of co-reference, i.e.

If M,w |=v (µ(n) = µ(n′)) then
M,w |=v ∃xKi(µ(n) = x) ∧ ∃yKi(µ(n′) = y)→ Ki(µ(n) = µ(n′))

This seems to be a small, natural deductive step for human agents, but whether
it is consistent with empirical evidence is not discussed by Marconi.
A similar small deductive step is involved in the following: in case agent i is able

to apply n, then for any name n′ for which he has knowledge of co-reference with n,
the theory states that he should be able to apply n′:

Fact 5.2. Application and inferential competence implies application. That is,

M,w |=v (µ(n) = µ(n′)) implies
M,w |=v ∃xKi(µ(n) = x) ∧Ki(µ(n) = µ(n′))→ ∃yKi(µ(n′) = y)

As mentioned in section section 5.4, a weak competence type not discussed in
(Marconi, 1997), namely correlation, can be identified in the formal framework.
The competence type can be seen as being weaker than application as the latter
implies the former, by the following fact.

Fact 5.3. Application implies correlation, i.e.

C2QEL |= ∃xKi(µ(n) = x)→ Ki(µ(n) = a)

The converse implication does not hold, as the agent will lack identificatory knowl-
edge. But in case agent i has an unambiguous concept of a, then this in conjunction
with the correlation of this concept with the meaning of a name does imply the
ability to apply the name:

Fact 5.4. Unambiguous concept and correlation implies application, i.e

∃xKi(x = a) ∧Ki(µ(n) = a)→ ∃yKi(µ(n) = y)
9Proofs of the facts are not included. In all cases, the assumption of the negated fact will soon
be seen leading to a contradiction.
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That is, the theory states that agents able to identify an object while also having
a name associated with the individual concept of the object should be able to apply
the name to the object.

5.5.3 Validation and Deductive Skills
The four facts above are examples of testable predictions of the formal theory. Find-
ing subjects with the correct abilities and testing the semantic skills can be used to
evaluate the theory. However, problems arise if contradicting evidence is found.
One problem regarding the present modeling is the Problem of Logical Omni-

science, first discussed by Hintikka (1962). The axiom system and semantics of
QEL ensure that any agent knows all logical consequences of his knowledge. As
the axioms include the axioms of propositional logic, the agent automatically and
instantaneously knows all of the infinite set of theorems of propositional logic. This
is obviously not the case for any, finite human agent. As the 2QEL framework is an
extension of QEL, the problem carries over. Hence, the proposed framework cannot
be a precise account of any subject’s knowledge.
If the problem of logical omniscience is ignored or solved, a problem regarding

the subject’s deductive skills in relation to possibly falsifying evidence still remains.
Consider, for example, a subject satisfying the antecedent of Fact 5.2 above by being
able to identify the referent of n and presents n′ when asked to supply a synonym.
In this case, the theory states that the subject should be able to identify the referent
of n′, too. But suppose the subject cannot do this. Then either the theory ought
to be rejected, or it can be salvaged by excuses regarding the deductive skills of the
subject. It might be argued that the subject is tired or that the subject has too short
an attention span to complete the basic deduction required to obtain knowledge of
the consequent. This way, the blame can be shifted from the theory of semantic
competence to the underlying theory of deductive skills.
If extensions of epistemic logic are used, then it is already known from the problem

of logical omniscience that these do not correctly represent human cognitive skills.
But if a logic without logical omniscience is used, it may still be argued that the
problem lies with this underlying theory of deduction, rather than the theory of
semantic competence. Hence, in order to be able to properly validate the present
framework, the theory of semantic competence should ideally be constructed in a
system already shown to properly represent human deductive skills. Until such a
system is constructed and amply validated, the outlook for validating the theory
constructed here is bleak.

5.6 Conclusions
In this chapter, a formal logical theory for a simplified version of Marconi’s structure
of lexical competence has been constructed. This formal theory has been identified
with the logic QS5n,σ with σ = {σOBJ , σLEX}. The logic was obtained via a com-
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pleteness result, showing that this logic was sound and complete with respect to
the class of models considered. This class of models have in turn been argued as
fairly representing the important aspects from Marconi’s theory by i) correctly rep-
resenting the ontological elements and ii) preserving the implicational relationships
between the competence types. Finally, the proposed model was investigated with
respect to some of the implicit assumptions made, some novel competence types
were identified, some facts about the theory was listed and a problem regarding
validation was discussed.
In the following chapter, the theory of semantic competence devised here will be

applied to Frege’s puzzles, and it will be shown that the theory sheds new light on
these problems.

Appendix: Towards a Hierarchy of Semantic
Competence Types
Note: This section is an appendix to the above, and the content is not used in the
remainder of the thesis. The reader can feel free to skip this section.

Given the implicational relationships between conjunctions of different competence
types noted in section 5.5.2, one may be led to seek out a general hierarchy of both
the types and strengths of semantic competence. Constructing a partially ordered
hierarchy could lead to an exact taxonomy of all competence types possible in the
presented framework. Alas, due to the many possible constellations of competence
types, names and objects that must possibly be considered, such a hierarchy becomes
quite complex. A complete elucidation of such a hierarchy is beyond this section,
and only a tentative exposure will therefore be given. In particular, a rudimentary
idea for a possible method of construction will be presented along with the sizes of
the corresponding hierarchies.
In order to construct such a hierarchy, regard the set of name tokens, LEX. This

set is partitioned by the identity into a finite partition. The partition is finite as
the identity is defined relative to the interpretation I and the finite set Nam. The
partition is defined as follows:

Definition 5.21 (Name Type Partition).

[LEX] = {[ṅ1], [ṅ2], ..., [ṅk]}

where [ṅi] = {n ∈ LEX : I (n) = ṅi}. J

Each cell [ṅi] hence consists of the name tokens n ∈ LEX which are mapped to ṅi
by I. The partition [LEX] thus consisting of name sets of name tokens, pooled by
being of the same type. They will therefore be denoted name types in the following.
No confusion should arise between this way of regarding name types and the name
types of Nam.
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The starting point of the construction of the hierarchy will be sets of co-referring
name types:

Definition 5.22 (Co-reference and Synonyms). Let M ∈ C2QEL with actual
world w. Two name tokens n and n′ are said to be co-referring under µ if

I (µ(n), w) = I (µ(n′), w) .

If n ∈ [ṅi] and n′ ∈ [ṅj], the name types [ṅi] and [ṅj] are said to be co-referring or
to be synonyms. J

Regard a set of co-referring name types N from a name type partition [LEX], i.e.
N ⊆ [LEX]. Then each possible partition of N can be regarded as representing a
way of being inferentially competent with the set of synonyms since each partition
may be seen as induced by the agent’s knowledge of the names’ co-reference. To see
this, define first the set of known synonyms of n:

Definition 5.23 (Known Synonyms). For each n ∈ LEX, let the set of known
synonyms of n be

n̄ = {n′ : M,w |=v Ki(µ(n) = µ(n′))}

The sets n̄ are termed KS sets. The set of all KS sets is denoted KS. J

The set n̄ is the set of all name tokens which the agent knows to be co-referring
with n. KS can be correlated with a partition of N by the following map:

Definition 5.24 (Map ρ). Where KS is the set of known synonym sets, N is a set
of co-referring name types and Φ(N) is a partition on N let ρ be a map

ρ : KS −→ Φ(N)

such that ρ(n̄) = {[ṅ] : [ṅ] ⊆ n̄}. J

The map ρ assigns to each KS set n̄ the set of name types the tokens of which
are known by the agent to co-refer.

5.6.0.1 Partitions and Inferential Competence.

It can now be illustrated how each possible partition of N can be regarded as a
way of being inferentially competent. The guiding idea is that every partition of
N = {[ṅ1], [ṅ2], ..., [ṅk]} can be seen as encoding information about the agent’s
knowledge: where two name types are in different cells in the partition, this reflects
that the agent does not know that the tokens of them co-refer (which, in fact, they
do as all the name types in N are synonyms). If, on the other hand, two name types
are in the same cell of the partition, the agent knows the tokens of these types to
co-refer. Hence, a finer partition of N means less knowledge; a coarser partition
means more knowledge. This is exemplified thrice:
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First, regard a situation in which agent i has only the inferential knowledge
assigned by default. That is, assume that for all n ∈ LEX, the agent is only
trivially competent. Then this way of being inferentially competent corresponds to
the partition of N into singletons: each cell consist of exactly one name type, the
tokens of which are known to co-refer (by virtue of syntactic competence). More
specifically, the connection between trivial competence and the singleton partition
of N can be presented as follows:

If i is trivially competent with all n, then for all n ∈ [ṅi], for all [ṅi] ∈ N , it
will be the case that n̄ = [ṅi] if I (n) = ṅi. This follows since trivial competence,
M,w |=v Ki(µ(n) = µ(n)), implies knowledge of co-reference, M,w |=v Ki(µ(n) =
µ(n′)), for all names of the same type, i.e. if also M,w |=v (n = n′). Put differently,
trivial competence is equivalent to requiring that M,w |=v Ki(µ(n) = µ(n′)) iff
M,w |=v (n = n′). Hence n′ ∈ n̄ iff I (n′) = I (n). Therefore, if I (n) = ṅi, then
I (n′) = ṅi, so by Definition 5.21 n′ ∈ [ṅi]. So n̄ = [ṅi].

Now regard the map ρ. For the requirement to be satisfied in the present case, the
partition Φ(N) has to be one where each cell is a singleton, and ρ(n̄) = {n̄} = {[ṅ]}.
So, to summarize, where KS is given by an agent that is only trivially competent,
and this set is related to a partition Φ(N) of N , this partition must consist of
singletons, i.e. Φ(N) = {{[ṅ1]}, {[ṅ2]}, ..., {[ṅk]}}.

Second, assume that i knows of two synonyms that they co-refer, but is only
trivially competent with the remaining names. That is, assume that i is trivially
competent with all names like above, except for the names from exactly two different
types, which the agent knows to co-refer. That is, for names n ∈ [ṅj] and n′ ∈ [ṅ′l]
such that [ṅj] 6= [ṅ′l], it is the case that M,w |=v Ki(µ(n) = µ(n′)). In this case,
the intuition is that the agent knows more, so this should correspond to a coarser
partition of N . This is indeed the case:

Under the assumption that M,w |=v Ki(µ(n) = µ(n′)), n̄ = n̄′. Assume that
n ∈ [ṅ1] and n′ ∈ [ṅ2]. Then [ṅ1] ⊆ n̄ and [ṅ2] ⊆ n̄′. Therefore, ρ(n̄) = {[ṅ1], [ṅ2]}.
The cell does not contain further elements as no further n′′ from different name
types are known synonyms to either n or n′. Further, as i was assumed trivially
competent with such remaining n′′, where n′′ ∈ [ṅi], ρ(n̄′′) = {[ṅi]}. Hence, for
ρ to fulfill the requirement in the definition, the partition of N must be Φ(N) =
{{[ṅ1], [ṅ2]}, {[ṅ3]}, ..., {[ṅk]}}.

Third, assume i knows that all type names in N co-refer. This should correspond
to the coarsest possible partition, the trivial partition Φ(N) = {N}. This is the case:
from the assumption that i knows that all names used in N co-refer, it follows that
n̄ = n̄′ for all such n, n′. Hence ρ(n̄) = ρ(n̄′) for all such n, n′. For ρ to map all n̄ to
the same partition cell while maintaining the defining requirement, this partition cell
must contain all [ṅi]. The only partition containing this cell is the trivial partition,
Φ(N) = {N}.
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5.6.0.2 Size of the Hierarchy.

The number of possible ways to be inferentially competent with respect to a set
of synonyms N with cardinality |N | = n is equal to the sum of the sets Sterling
numbers of second kind. The Sterling number of second kind with parameters n
and k is the number of possible partitions with k cells of a set with n elements,
cf. (Forst, 2006, sec. 9.1). This number is denoted {nk} and the number of possible
partitions is thus

n∑
k=1

{
n
k

}
These numbers get quite large, quite fast. To illustrate, for a set consisting of 3

synonyms, there are
3∑

k=1

{
3
k

}
=

{
3
1

}
+

{
3
2

}
+

{
3
3

}
= 1 + 3 + 1 = 5

possible partitions. Where there are 5 co-referring names, this number grows to
52, and where 10 synonyms exist, there are 115975 different ways to be inferentially
competent.10 This number seems too large for the hierarchy to be applicable in prac-
tice, in particular since these are found without taking application and correlation
into consideration.

5.6.0.3 Strengths.

The idea that finer/coarser partitions of N encode that the agent has less/more
information about the co-reference of synonyms implies two things: first, that a
partial order of different strengths can be found and second, that some of these
strengths may be equal.
Regard for example a set of synonyms N = {[ṅ1], [ṅ2], [ṅ3]}. Then the two parti-

tions Φ2+1(N) and Φ1+2(N)

Φ2+1(N) = {{[ṅ1], [ṅ2]}, {[ṅ3]}}
Φ1+2(N) = {{[ṅ1]}, {[ṅ2], [ṅ3]}}

can be regarded as equal in strength, since in both cases, the agent knows that two
out of three synonyms co-refer. The partitions

Φ3(N) = {{[ṅ1], [ṅ2], [ṅ3]}}

and
Φ1+1+1(N) = {{[ṅ1]}, {[ṅ2]}, {[ṅ3]}}

are respectively stronger and weaker, as the agent knows that respectively more and
less names are synonymous.
10A recursive formula for calculating Sterling number of second kind can be found in (Forst, 2006).

An explicit formula can be found online on Wikipedia.
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For a set of co-referring names N with cardinality |N | = k, the number of different
strengths is given by the partition number p(k) of k, i.e. the number of ways k can
be represented as a sum of natural numbers where the order of the summands is
irrelevant, see (Forst, 2006, sec. 9.6). This was illustrated by the subscripts above:
Φ2+1(N) is the partition of the three object set N into two sets with cardinality 2
and 1. This is of same strength as the partition Φ1+2(N), and if the order of the
summands in the subscripts are irrelevant, these two partitions will count only once.
For the values 3, 5 and 10, the partition numbers are, respectively, p(3) = 3,

p(5) = 7 and p(10) = 42. Hence, focusing on the various strengths of inferential
competence greatly diminishes the size of a possible hierarchy.

5.6.0.4 Adding Application.

The basic idea for adding application to the picture is that where an agent is equally
inferentially competent, but is able to apply more names in one case, this case will
be stronger in strength. Where the agent is more inferentially competent in one
case, but unable to apply names, and less inferentially competent in another, where
the agent is able to apply a name, these will be considered incomparable. See
Figure 5.6.1 for an illustration.
When adding application, the combinatorial task of finding the cardinality of the

partially ordered hierarchy becomes difficult. By Fact 5.1 and Fact 5.2, for any
inferential competence strength, the agents can at most apply names from one of
the cells without part of the partition collapsing. For example, if an agent can apply
both n ∈ [ṅ1] and n′ ∈ [ṅ3], but is supposed inferentially competent of strength
Φ2+1(N) above, an inconsistency can be reached. By fact Fact 5.1, the agent must
be inferentially competent with the strength of Φ3(N). This insight is important,
as it eliminates many superfluous ‘strengths’.
It is conjectured that the cardinality of the hierarchy of application and inferential

competence can be found in the following way: for a set of co-referring names N ,
identify each of the possible partitions of |N |, where the order of the summands are
irrelevant. For each of these partitions, identify the number of different summands
strictly greater than 0 and add 1. Finally, sum all these numbers. Exactly how this
is to be done if not manually is unknown at this juncture.
The method will correctly describe the different types of strengths since each

partition with n different summands gives rise to n + 1 different strengths: one for
each summand a name of which the agent can apply, plus one where the agent can
apply no names. The joint sum will hence add to the different strengths possible.
The hierarchy for |N | = 3 is illustrated in Figure 5.6.1, and for this case, the

method outlined is applied as follows. First, there are three different ways to par-
tition 3: 3, 2 + 1 and 1 + 1 + 1. The number of different summands plus 1 is then
2, 3 and 2. The sum is 7, which (at least in this case) coincides with the amount of
different elements in the hierarchy.
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3
3

2+1 2+1 1+2

+1+11 1+1+1

Figure 5.6.1: Hierarchy for application and inference, for |N | = 3. Numbers in bold mark
partition cells for which the agent can apply a name, arrows indicate strength order. Notice
2+1 and 3 are not connected, illustrating that the strength order is partial.

Conclusion. The partial order illustrated in Figure 5.6.1 seems to suggest that
though it may become very large in many applications, a hierarchy of strengths
composed of inferential competence and application does seem possible to construct.
Given a suitable notation, it further seems that the combinatorial aspects of the or-
der are solvable, provided that the loose method provided above is feasible. Further,
given such a suitable notation, a taxonomy of semantic competence strengths seems
constructible. Further, Figure 5.6.1 seems to illustrate the possibility of constructing
a lexicographic ordering of such competence strengths.
Further aspects should be included, though, if the hierarchy are to elucidate all

possible aspects of semantic competence. The inclusion of these are beyond the
scope of the present appendix. That a tentative order of semantic competence
type and strengths can be constructed provides credence to the hypothesis that an
appropriate hierarchy and taxonomy can be constructed in general.

104



6 Showing Proof of Concept
In section 2.1.2 the dilemma put to the Millian theory of meaning by Frege was in-
troduced (restated below). Being a dilemma, it presented two options for the Millian
to interpret identity statements. It is usually argued that neither of these are feasi-
ble, and that Millianism should therefore be rejected. In the present chapter, each of
the two disjuncts will be regarded in the light of the theory of semantic competence
developed in the previous chapter. It is argued in each case that the more fine-
grained view on informational content the theory of semantic competence applies
yields analyses of the arguments which elucidate the informational structure. The
revealed structure results in a view of the two cases as transparent, non-problematic
linguistic situations.

6.1 Frege’s Puzzle about Identity
As mentioned in section 2.1.2, the Puzzle about Identity was raised against Millian-
ism based on the interpretation of the identity expressed in the identity statements
as being a relation between objects. In the mentioned section, using the identity
statements

(a) Hesperus is Hesperus

(b) Hesperus is Phosporus

the argument was presented in the following way:

(A) (a) and (b) mean the same.

(A→B) If (a) and (b) mean the same, then a semantically competent speaker would
know that (a) and (b) mean the same.

(B→C) If a semantically competent speaker would know that (a) and (b) mean the
same, then they are equally informative to the speaker.

(¬C) (a) and (b) differ in informativeness to the competent speaker.

∴ Contradiction.
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The four premises are jointly inconsistent, and the typical textbook choice is to reject
premise (A). This premise is a consequence of the Millian view, and the conclusion
drawn is hence that there must be more to meaning than mere reference.
Given the formal framework from the preceding chapter, the argument can now

be given a rigorous analysis.
Assume that the identity statements ‘Hesperus is Hesperus’ and ‘Hesperus is Phos-
phorus’ are captured by (µ(n) = µ(n)) and (µ(n) = µ(n′)), respectfully. The premise
(A) states that these have the same meaning. By truth-theoretic semantics, this
means that they should have the same truth conditions, so assume

(µ(n) = µ(n))↔ (µ(n) = µ(n′)) (6.1.1)

holds in the actual world w of a C2QEL model, M . As the left-hand side is a validity,
this is equivalent to the substantial assumption that

M,w |=v (µ(n) = µ(n′)) (6.1.2)

The second premise is that (6.1.2) implies that any competent speaker knows (6.1.1).
The truth of this premise depends on the type of competence meant. The last

three premises of the argument will be run through using inferential competence,
application and correlation. The ability to name objects is not relevant, as this
ability assumes agents being presented with objects rather than names.

Inferential Competence The second premise states that if n and n′ mean the
same, i.e. (µ(n) = µ(n′)), and agent i is inferential competent with respect to
the two names, then agent i would know that n and n′ mean the same. As i is
inferentially competent with respect to n iff

M,w |=v (µ(n) = µ(n′))→ Ki(µ(n) = µ(n′))

for all n′, cf. (7.3.2) on page 120, the premise holds true, so

M,w |=v Ki(µ(n) = µ(n′)) (6.1.3)

The third premise states that (6.1.3) implies that the two identity statements are
equally informative to the agent. ‘Equally informative’ is taken to mean that the
two statements would eliminate the same worlds from agent i’s model if truthfully
announced to the agent, in the sense of (van Ditmarsch et al., 2008).
As (µ(n) = µ(n)) is a validity, it eliminates no worlds, so the premise can be

reduced to (6.1.3) implying that

¬∃w′ ∼i w : M,w′ |=v ¬(µ(n) = µ(n′)) (6.1.4)

That no ¬(µ(n) = µ(n′)) world exists follows from (6.1.3) and the semantics of the
Ki operator. Hence the third premise holds true as well for models in which the
agent is assumed to be inferentially competent.
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This is not the case with the last premise, namely that the identity statements
should not be equally informative, i.e.

∃w′ ∼i w : M,w′ |=v ¬(µ(n) = µ(n′)) (6.1.5)

This premise is false as a direct consequence of the assumption of inferential com-
petence.
To evaluate, if one sticks with Millian meaning and assume agent i inferentially

competent, i does not learn anything new by being told that the two names co-refer.
This is a clear consequence of the information the agent is assumed to possess in
virtue of being inferentially competent. Hence, the conclusion that the agent is not
informed by the identity statement seems far less ‘puzzling’ due to the transparency
of the competence type when formalized. Further, it does not seem paradoxical
enough (if at all) to warrant a rejection of the Millian view.

Referential competence, application The last three premises are assessed under
the assumption that agent i is able to apply both n and n′, i.e. that Definition 5.15
on page 91 holds at w for both.
The second premise amounts to

(µ(n) = µ(n′)) ∧ ∃xKi(µ(n) = x) ∧ ∃yKi(µ(n′) = y)→ Ki(µ(n) = µ(n′))

which is valid on the class of models, as was stated as Fact 5.1 on page 97. Hence,
from the assumption of the antecedent, it follows that i is inferentially competent
with respect to the two names, i.e. (6.1.3) holds. As above, this entails the truth
of (6.1.4) and the falsity of (6.1.5). Hence, the agent will not be informed by the
identity statement.
This is an unsurprising conclusion if one notices the informational structure behind

it. For the ability to apply a name amounts to the agent being able to identify
the referent, in the sense of having appropriate de re knowledge. Under suitable
assumptions regarding short-term memory, a statement that two names co-refer will
clearly not be informative when the agent has just identified the referent of each
name.
In conclusion, if Millianism is assumed in conjunction with the agent being able

to apply both names, the agent is not informed by the identity statement. Again,
the formal analysis shows that there is nothing puzzling or paradoxical about the
agent not being informed, and this version of Frege’s Puzzle about Identity does not
provide a strong argument against Millianism.

Referential competence, correlation Running through the argument using the
weaker ability of correlation, the second premise becomes

Ki(µ(n) = a) ∧Ki(µ(n′) = b)→ Ki(µ(n) = µ(n′)) (6.1.6)

This formula is satisfiable, but not valid in the class of C2QEL models. This implies
that (6.1.3) will be true or false depending on the specific model. In case the
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consequent of 6.1.6 is satisfied, the agent will have knowledge of co-reference, and it
will, like above, not be surprising that he is not informed by the identity statement.
In case the consequent fails, a new situation arises. In particular, this will imply
that (6.1.4) likewise fails to be the true. From this it follows that the ‘intuitive
premise’

∃w′ ∼i w : M,w′ |=v ¬(µ(n) = µ(n′))

is now satisfied, as opposed to the above cases (the above formula is (6.1.5) from
above). This in turn means that the agent may in fact be informed by the identity
statement. If a truthful announcement of the identity statement was made to the
agent, any w′ as specified in (6.1.5) could be eliminated, and the agent would thereby
gain information.
By the truthful announcement, the agent is informed on both an inferential and

a conceptual level. First, the agent will after the announcement have knowledge of
co-reference with respect to the two names. Second, where the agent before had two
distinct concepts, the agent’s concepts of a and b will after the announcement have
merged.
However, given the weaker notion of competence, this does not conflict with the

assumption of Millian meaning of proper names. To see this, notice that the two
premises (A→B) and (B→C) from the argument above are false when assuming the
weaker semantic competence type: correlation. Hence, the original contradiction
can no longer be derived. Therefore, again, this version of the argument does not
warrant a rejection of Millianism.

In conclusion Neither of the above three versions of Frege’s Puzzle about Identity
provided a proper argument against Millianism. In fact, when the structure of the
situations where analyzed using precise notions of semantic competence and clear
assumptions regarding the agent’s information, all three situations seemed natural:
where the agent was not informed, there was a clear, epistemic reason, and where
the agent was informed i) the specific way he was informed could be spelled out,
and ii) the case caused the original argument against Millianism to break down. In
short, neither of the three types of competence result in a strong argument against
the Millian view, and the utilization of a formal theory of semantic competence
makes this plainly visible.

6.1.1 Objection
Against the proposed analysis and resolve of Frege’s Puzzle, one may object that
the premises of the model misrepresent a very relevant case.1 To exemplify, consider
an astronomer originally informed by ‘Hesperus is Phosphorus’. It is conceivable
that this agent was in fact able to identify both Hesperus and Phosphorus, but still
unaware that Venus is the referent of both names. Hence, the agent should be able

1This is not an objection from the general literature, but a concern of the author.
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to apply both names, but still be informed by the identity statement. In short, one
may object to the intuitive validity of

(µ(n) = µ(n′)) ∧ ∃xKi(µ(n) = x) ∧ ∃yKi(µ(n′) = y)→ Ki(µ(n) = µ(n′)).

The example motivating this objection features an important aspect not explicitly
mentioned, which is the context of identification. The cases reviewed in (Marconi,
1997) relate only to a single such context: the experiments where not conducted in
a variety of different contexts. The astronomer example, on the other hand, features
multiple contexts. In particular, astronomers where able to identify Hesperus in the
evening, whereas Phosphorus was identified in the morning, and the astronomers
where unaware that the two objects identified where in fact the same (i.e. in neither
context where they able to identify Hesperus and Phosphorus as the same object).
In order to show that adding the extra parameter of context does not change the

conclusions drawn in the above section, the following chapter will extend the present
model for semantic competence to one where multiple contexts can be modeled.
However, before moving on to this extension, it will be argued that the second

disjunct of Frege’s Dilemma also benefits from an analysis in terms of semantic
competence and informational content.

6.2 The Problem of Non-Informativeness
As mentioned in section 2.1.2, the second disjunct of Frege’s Dilemma concerns
the non-informativeness of an identity statement where the informational content
of ‘n1 is n2’ is taken to be that the two names co-refer. The critique raised was
that the informational content will then be vacuous, in that it will regard linguistic
convention rather than word-world relations (unless it is already known which object
one of the names refer to), and that this disjunct therefore was unfeasible.
In the above, it has silently been assumed that the way the identity statements

where modeled corresponded with the assumptions of the first disjunct, namely
utilizing the identity as a relation between objects. This is indeed also the case,
as µ(ni) ∈ Obj. Yet, the same modeling means that the second disjunct of Frege’s
Dilemma may also be fulfilled. This is so as the identity statement µ(n1) = µ(n2)
may be read ‘the meaning of the name n1 is the same as the meaning of the name
n2’. Hence, the statement expresses that

the sign ‘[n1]’ designates the same object as the sign ‘[n2]’ (Collin and
Guldmann, 2010, p. 49-50).

This means that the second disjunct is in effect – at least partly and then unprob-
lematically, it will be argued, as this depends on the semantic competence of the
speaker.
In order to analyze this second problem, it cannot be assumed that the agent

can apply either name, and neither can it be assumed that the type of competence
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meant is inferential competence. It cannot be the case that the agent can apply
one name as this is precluded by the argument. Indeed, if the agent was able to
apply one name and subsequently be informed by the identity statement, then this
would result in knowledge of a word-world relation, as the agent would come to be
able to apply the second name, cf. Fact 5.2 on page 97. If the agent was already
inferentially competent with respect to the two names, the announcement would be
unsurprisingly uninformative, cf. the previous section. Hence, the agent is weaker
semantically competent, i.e. has some sort of correlational competence.
The case where the agent non-trivially correlates n1 and n2 with ambiguous con-

cepts a and b was discussed above, and it was seen that the agent was informed
both about linguistic convention, but also conceptually. Hence, in that situation,
the announcement of the identity statement did not have a trivial effect, contrary
to the objectionable conclusion of the Problem of Non-Informativeness.
The weaker choices left are that the agent is trivially competent, cf. (5.5.4) on

page 96, with respect to either one or both names.

Trivially competent with one name In the case where i correlates n1 with a and
is trivially competent with respect to n2, where M ∈ C2QEL with actual world w, it
will be the case that

M,w |=v Ki(µ(n1) = a) ∧Ki(µ(n2) = µ(n2)).

When the announcement is made of the identity statement, the agent will again
gain both conceptual and linguistic information. The conceptual information will
result in the knowledge that n2 is another name for a, i.e.

M,w |=v Ki(µ(n2) = a)

Hence, though Ca,w
i (I (a, w)) > 1 by assumption, i.e. i has an ambiguous concept

for a at w, the announcement will still result in a new relation between the word
lexicon, the semantic lexicon and real-world objects. Thus the identity statement
does not lack proper informational content when this type of semantic competence
is considered. Again, the objectionable conclusion is not reached.

Trivially competent with both names In order to construct a proper argument
from the second disjunct, it must therefore be assumed that the agent is trivially
competent with respect to both names. This amounts to regarding any C2QEL model.
Every world in such will satisfy

M,w |=v Ki(µ(n1) = µ(n1)) ∧Ki(µ(n2) = µ(n2)).

Hence the notion of trivial competence. Assume that (µ(n1) = µ(n2)) is satisfied at
w in order for the possibility of a truthful announcement of it. After the announce-
ment, i will come to know that the two names co-refer, i.e. will gain information
about linguistic convention in the sense of being inferentially competent with the
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two names, but will still not be able to apply either name. Hence, a new relation
is not drawn from the word lexicon, through the semantic lexicon and onto a real-
world object. This is exactly what the problem on non-informativeness prescribes
and raises as a complaint against the used interpretation of identity statements.
But that the agent only gains abstract, linguistic knowledge is unsurprising when a

precise version of the premises of the argument is taken into consideration. When the
agent is assumed to be completely uninformed, the update has no other information
to interact with, and the conclusions learned by the agent are hence limited – in
this case, to some concerning only linguistic phenomena.
This does not seem to pose a problem once properly understood, though. In fact,

if the Millian theory of meaning entailed that an agent utterly uninformed of the
meaning of two terms, by being told that they co-referred where then able to identify
the referent by default, this would seem to be a serious problem. Specifically, this
would mean that the theory entailed that inferential competence with two names
implies the ability to apply both names, which is inconsistent with the findings
reviewed in (Marconi, 1997).
Thus, when the information possessed by the agent in the announcement situation

is modeled explicitly, it is seen that it is both unsurprising and unproblematic that,
until the agent is able to relate either name to the world, the agent will be in
possession

of an item of information about two languages and not knowledge about
the world. (Collin and Guldmann, 2010, p. 50)

6.3 In Sum
In this chapter, the two disjuncts of Frege’s Dilemma has been analyzed using the
constructed formal theory of semantic competence. This has been done by analyzing
both disjuncts using the different notions of semantic competence extracted from
this theory. For each disjunct, and each type of semantic competence, it has been
argued that the case did not provide an argument against Millianism. Ignoring the
objection of section 6.1.1, one can draw the overall conclusion that Frege’s Dilemma
does not pose a problem for the Millian theory of meaning.
This conclusion stands in sharp contrast with the standard textbook conclusion.

The reason for the different conclusion drawn here follows from the application
of a strictly defined theory of semantic competence. The theory provides precise
notions of semantic competence based on the agent’s epistemic situation. This
differs from the textbook approach, where the notion of semantic competence is
left undefined. Further, the notion of being informed is clear in relation to the
formal theory, which results in a transparency of ‘intuitive’ textbook premises. This
transparency in makes these premises less intuitively correct. As a result, the formal
theory allows for more detailed analyses of the disjuncts, showing that the apparent
inconsistency with Millianism is non-existent. In sum, it has been shown that the
situations described as puzzling and problematic in the literature are in fact natural
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and well-understood if the agents information regarding the used language is taken
into consideration.
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7 Contextual Semantic Competence
In section 6.1.1, an objection was raised against the analysis of Frege’s Puzzle about
Identity. The objection was in relation to the analysis in terms of application. It
was based on the intuitive idea that though an agent is able to identify the referent
of two co-referring names, the agent might not know that these two referred to the
same object. As a reply it was argued that this presumed that the agent where doing
the identification in distinct contexts, and that once such was added to the formal
model, the analysis would still be applicable. To lend credence to this argument,
this chapter adds contexts to the C2QEL models. The formal details are introduced
in section 7.1. The constructed model class is discussed generally in section 7.2, and
specifically in relation to semantic competence in section 7.3. Finally, the objection
against the previous analysis is review in section 7.4.
A thorough discussion of the nature of contexts will not be presented. It is as-

sumed that a context is an abstraction of a class of situations, prominent features
of which reoccur enough for such to be made. The actual world of a context is then
understood as the world encoding what is actually the case in these situations. It is
assumed that the actual worlds are metaphysical possibilities relative to one another,
where these worlds consist of the same elements, which persist across worlds.
Examples of contexts may for instance be ‘at work’, ‘at home’ and ‘on weekend

trip’, or ‘stargazing in the morning’ and ‘stargazing in the evening’.

7.1 Adding Contexts
The C2QEL models are single context models. They contain one actual world and
epistemic alternatives to this world. Adding further context requires adding further
actual worlds, each capturing what is the actual state of affairs in the appropriate
context. Further, for each such added actual world, the model must contain a set of
epistemic alternatives. If it is assumed that the agents should be able to tell which
context they are in, the epistemic alternatives for a context should not overlap with
such from any other. This assumption will be made here.

Definition 7.1 (Context Structure). Where W is a non-empty set of worlds, a
context structure on W is a pair (S,Act) where S is a partition of W

S = {S1, S2, ..., Sn}

where each Sk contains an actual world ωk from the set of actual worlds,

Act = {ω1, ω2, ..., ωn}.
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Each Sk ∈ S will be referred to as a context from (S,Act). J

A context structure defines which worlds from W are of the same ‘context type’
as each actual world. It will be assumed that agents are capable of telling which
context they are in, and it will therefore be required that the indistinguishability
relations must induce an at least as fine partition on W :

Definition 7.2 (Context Distinguishability). Where Sk is a context from (S,Act),
an indistinguishability relation ∼i that distinguishes contexts satisfy

If w ∼i w′then w,w′ ∈ Sk.

Define the set of agent i’s epistemic alternatives to ωk by

Sik = {w : (ωk, w) ∈∼i}

J

That is, where w and w′ are indistinguishable to agent i, these are instances of the
same context. In other words, the agents’ epistemic alternatives are pre-partitioned
by the modeler in order to ensure that the agents know which context they are in.
That contexts are disjunct has the effect that the agents have no conception

of what is the case in other contexts. In fact, as such contexts are completely
disconnected, nothing in one context will have any bearing on the truth of formulas
in other contexts. To add a connection between contexts, two alethic-type relations
between actual worlds are defined:

Definition 7.3 (Objective Possibility). Where Act is the set of actual worlds
from (S,Act), define the objective possibility relation by

R = Act× Act.

J

The objective possibility relation relates all and only the actual worlds. A world
accessible by this relation is interpreted as the way the world actually is, when in
a different context. As such, the relation is not between metaphysical alternatives,
but between metaphysical actualities.1
The objective possibility relation hence ranges over actual worlds, but since an

agent may be in doubt as to which world is the actual in some context, the agent’s
conception of such possibilities also needs to be defined:

1Recall that the contexts are assumed to be abstractions of sets of ‘real’ contexts, including only
re-occurring features. Hopefully the reader agrees that problems regarding spatio-temporal
co-existence and specific metaphysical nature of such ‘co-existing’ possible worlds can be left
undiscussed.
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Figure 7.1.1: A C�2QEL model with three contexts, each containing i) one actual world (white
center), ii) three epistemic alternatives and iii) one information cell for agent i. The objective
possibility relation R is marked by the dotted line, and the subjective possibility relation Ri by
the gray area.

Definition 7.4 (Subjective Possibility). Where S = {S1, ..., Sn} is the partition
from (S,Act), the subjective possibility relation for agent i is defined by

Ri =
⋃
k≤n

Sik ×
⋃
k≤n

Sik.

J

The definition states that any epistemic alternative to any actual world is consid-
ered a possibility from any other epistemic alternative.
The subjective possibility relation is used to express the agents’ conception of the

objective possibility relation. The idea behind the definition is that where an agent
cannot tell the worlds in Sij from ωj and cannot tell the worlds in Sik from ωk, and ωj
and ωk are possible from one another, then all the worlds in Sij should be considered
possible from all the worlds in Sik and vice versa.

Definition 7.5 (Context Model). A context model M is a tuple

M = 〈W, (S,Act), (∼i,Ri)i∈I ,R, Dom, I〉

where W is a set of states, (S,Act) is a context structure on W , (∼i,Ri)i∈I is a set
of indistinguishability relations distinguishing contexts and subjective possibility
relations, one of each for each i ∈ I, R is an objective possibility relation over Act,
and Dom and I are as in C2QEL models.
The class of context models is denoted C�2QEL. J

7.1.1 Syntax and Semantics
The language L2QEL is augmented with two operators � and �i, i ∈ I. The resulting
language is denoted L�2QEL. The set of L�2QEL well-formed formulas include the well-
formed formulas of L2QEL, and where ϕ is a well-formed formula, so is

�ϕ | �iϕ
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Dual operators of � and �i are defined by ♦ := ¬�¬ and ♦i := ¬�i¬.
The semantics for connectives, quantifiers and the knowledge operators remain as

defined in chapter 3 and section 5.2. The semantics for the necessity operators are
defined as follows:

M,w |=v �ϕ iff ∀ω ∈ Act, M, ω |=v ϕ
M,w |=v �iϕ iff ∀w′ : wRiw

′ ⇒M,w′ |=v ϕ

The reading of the box operators are ‘in all contexts, ϕ’ and ‘in all contexts, for
all i knows, ϕ’, respectfully, and the diamond operators are read ‘in at least one
context, ϕ’ and ‘in at least one context, for all i knows, ϕ’. Having the comments
regarding the loose formulation of the involved metaphysics in mind, the readings
can be put as ‘objectively/subjectively necessarily/possibly, ϕ’, respectively.

7.1.2 Restrictions on Meaning and Identity
As mentioned in section 5.2, the meaning function utilized there made names rigid in
the sense that they had the same meaning in all metaphysically possible worlds. Of
such metaphysically possible worlds, there was possibly only one, namely the actual
world. As C�2QEL include more than one actual world, and hence more than one
metaphysically possible world, the meaning function must be restricted to preserve
rigidity. To this end, it is required of µ that

∀ω, ω′ ∈ Act : M,ω |=v (µ(n) = a)⇒M,ω′ |=v (µ(n) = a) (7.1.1)

for any a ∈ OBJ and all n ∈ LEX. The requirement states that µ(n) must be
the same in all actual worlds for all names n, i.e. all names refer rigidly over Act.
Adopting this restriction results in the local validity over all ω ∈ Act of

(µ(n) = µ(n′))→ �(µ(n) = µ(n′))

i.e. that co-reference of names is objectively necessary.
The currently defined semantics does not distinguish between object identity

across actual worlds and epistemic alternatives, though one rests on physical dura-
tion and the other on current information. One cross-identity restriction regarding
physical identity statements, namely their persistence across actual worlds, will be
assumed:

∀ω, ω′ ∈ Act : M,ω |=v (a = b)⇒M,ω′ |=v (a = b) (7.1.2)
This requirement ensures that objects are self-identical across actual worlds. Hence,
across actual worlds, an incontingent identity system is in effect. Given (7.1.2),
necessity of identity

(t = t′)→ �(t = t′) (7.1.3)
is satisfied at all ω ∈ Act for all terms in which function symbols do not occur. For
w 6∈ Act, (7.1.3), may not hold, but the weaker

♦(t = t′)→ �(t = t′) (7.1.4)
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is valid for all terms t, t′ in the class C�2QEL under the assumptions listed above.
In the following, if not otherwise specified, reference to the class C�2QEL is meant

to include the above restrictions. Proofs of validity and invalidity of mentioned
formulas will not be shown, due to considerations of space.

7.2 Axioms and Operator Interplay
The following section has two purposes. The first is to illustrate the features of the
theory of contextual semantic competence that can be constructed on the basis of
the C�2QEL models. The second is to investigate the possibilities for constructing a
complete axiom system for such a theory.
In order to find a complete axiom system, axioms for the separate operators must

be present. With respect to the Ki- and �i-operators, then these validate the S5
axioms. However, this is not the case with the �-operator. In particular, T does
not hold for � as R is not defined to be reflexive in W \ Act. � validates the
KD45 axioms2, and in all ω ∈ Act, T holds. It is therefore conjectured that a
complete axiom system must include the S5 axioms for Ki and the KD45 axioms
for �. However, the S5 axioms for �i may not be required, due to the possibility of
defining �i in terms of Ki and �, as will be discussed below.
The models of C�2QEL exhibit some properties regarding the interplay of the three

operator types defined.3 First, the system allows that necessary truths are unknown.
This is embedded in the invalidity of the schema

�ϕ→ Kiϕ (7.2.1)

The feature is wanted as necessary a posteriori propositions and agent’s (lack of)
knowledge of these will be modeled. Necessary a posteriori propositions can be
unknown, and the validity of (7.2.1) would preclude this possibility. Related, the
schema

�ϕ→ �iϕ (7.2.2)

is also invalid. As the �i-operator is meant to capture agent i’s subjective view of
what is necessary in all contexts, the invalidity of (7.2.2) nicely captures that this
notion is not tainted in too high a degree by what is actually the case.
It may further be noted that

�iϕ→ �ϕ (7.2.3)

is valid, and reflects that the subjectively possible worlds is a superset of the ob-
jectively possible worlds. The validity of (7.2.3) follows as R ⊆ Ri, for any i ∈ I.

2The KD45 axioms are K, 4, 5 and D, where D is ♦>. D is valid in C�2QEL as there is always at
least one actual world, cf. the definition of context structures above.

3That the following properties hold will not be proven, but can be shown simply by constructing
satisfying models and counterexamples for contingent formulas or by deriving contradictions
from the assumption of the negation of a formula stated to be valid.
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Regarding the contrapositive of (7.2.3), ♦ϕ → ♦iϕ, gives a nice, intuitive reading:
whatever is objectively possible is subjectively possible. That is, no agent will gain
knowledge in a way that will eliminate actual worlds from the set considered possi-
ble. It is interesting to note that the converse of (7.2.3) does not hold, and hence
neither does it’s contrapositive:

♦iϕ→ ♦ϕ

That is, though agent i may conceive it possible that ϕ, this does not imply that ϕ
is true in any of the actual possibilities.
Having as wide a semantic scope as it does, subjective necessity also implies

knowledge, i.e.
�iϕ→ Kiϕ (7.2.4)

is valid. This follows from the inclusion of ∼i in Ri. The contrapositive of (7.2.4),
Piϕ → ♦iϕ, again yields an intuitive reading: if agent i considers ϕ possible in the
actual context, then it is considered possible when the space of all contexts is under
consideration. Hence, if i cannot rule out ϕ in the present context, then i cannot
rule out ϕ in all contexts.4 The converse implication, Kiϕ→ �iϕ, is not valid.
Expressions of the type �iϕ require truth of ϕ in a very big part of the model

(all worlds connected to any ω ∈ Act, if the mono-agent case is regarded), as was
the reason for the two validities immediately above. The strong requirements for
it’s truth also result in the validity of

�iϕ→ Ki�iϕ

and
�iϕ→ �iKiϕ

In general, �iϕ hence implies ϕ prefixed with any n-length operator-block consisting
of �i- and Ki-operators. This can also be seen from (7.2.4) and axiom 4 for Ki and
�i.5
The �i-operator may be defined using the �- and Ki-operators, by utilizing the

following two validities
�Kiϕ→ �iϕ (7.2.5)

�iϕ→ �Kiϕ (7.2.6)

These validities are interesting from a meta-theoretical point of view. They show
that the �i-operator can be introduced as the abbreviation �i := �Ki, as will be
commented on below.
One unfortunate relation holds between the �- and Ki-operators. This is the

validity of
�ϕ→ Ki�ϕ (7.2.7)

4Mind the quantifier scope: it is not the case that if i cannot rules out ϕ in the actual situation
then in all situations, i cannot rules out ϕ. Though ¬Kiϕ holds in one partition, this does not
preclude that Kiϕ holds in others.

5If 4 for �i is included.
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As T is not valid for �, this does not imply that necessities are known, as mentioned
above. Yet, the validity is counter-intuitive and readings its contrapositive does not
clarify matters. The definition of the objective necessity operator hence results
in an unwanted “tap” into knowledge of objective necessity. The best response
available at the present is that formulas like (7.2.7) where �-operators occur within
the scope of knowledge operators have no coherent reading, and that knowledge
of necessities should be expressed using the for that purpose designed subjective
necessity operators. It is noted that (7.2.7) is problematic, but this will be ignored
as it will have no bearing on the following analysis.

Completeness
With the Canonical Class Theorem and Theorem 5.1, showing the completeness
of S5n,σ with σ = {σOBJ , σLEX} with respect to C2QEL, one could hope finding a
complete axiom system for C�2QEL was easy. Further, in order to obtain a logical
theory of semantic competence with contexts, axioms characterizing the restrictions
on meaning and identity should be found.
Regarding the latter, one could hope that adding 7.1.4 would be sufficient, as this

seemingly enforces the requirements across Act by securing that meaning is rigid
and identity constant across all actual worlds.
Certain aspects of the structure between ∼i, Ri and R is seemingly captured by

formulas in the section above: including 7.2.5 and 7.2.6 ensures that both ∼i and
R are sub-relations of Ri, and further allows for the definition of �i in terms of Ki

and �. This means that extra axioms for the new modalities can be restricted to
axioms for �.
Finding the appropriate axioms for �, though, is not as easy. Adding the KD45

axioms for � will result in a sound system, but it is not complete: in particular,
the requirement that the intersection between each ∼i-cell and Act are singletons is
not captured by any of the axioms which have been mentioned here. At this point
A proper axiom is not known to the author, and the venture for a complete axiom
system for contextual semantic competence will not be investigated further.

7.3 Degrees of Contextual Competence
In chapter 5, formal counterparts to the different types of semantic competence
from (Marconi, 1997) were identified. Each such type was characterized relative
to one context, i.e. one actual world with epistemic alternatives. In the extended
framework, these competence types can be bend in degrees of strength measured by
the amount of contexts in which the agent is competent.
As C�2QEL models include multiple actual worlds, and knowledge in one does not

imply knowledge in others by default, agents may in such models be competent
with respect to some type in one situation, while simultaneously lacking to be so
in another. This allows for a measurement of semantic competence by the quantity

119



Chapter 7 Contextual Semantic Competence

of contexts in which the agent possess one or more kinds of competence. This
will shortly be discussed in order to introduce terminology which will allow for a
classification of different premises for Frege’s Puzzle about Identity to be discussed
below. A general hierarchy as in section 5.6 will not be discussed.

Sk Inferential Competence
Modifying the definitions of various competence types from section 5.4 to contextual
variants are straight-forward. This can be done merely by relativizing each definition
to a context by adding a context parameter in the definitions:

Definition 7.6 (Sk Knowledge of Co-reference). Where ωk is the actual world
of context Sk from model M , agent i is said to have Sk knowledge of co-reference of
n and n′ iff

M,ωk |=v Ki(µ(n) = µ(n′)) (7.3.1)
J

Definition 7.7 (Full Sk Inferential Competence). Agent i is fully Sk inferen-
tially competent with respect to n in model M iff

M,ωk |=v (µ(n) = µ(n′))→ Ki(µ(n) = µ(n′)) (7.3.2)

for all n′ ∈ LEX. J.

These two notions of Sk inferential competence can easily be extended to cover
competence in multiple contexts: in case an agent is inferentially competent in
contexts Sk and Sj, it is said that the agent is Sk + Sj inferentially competent,
etc. Where the agent is inferentially competent in all contexts, i.e. is S1 + · · · +
Sn inferentially competent, the agent is said to universally have knowledge of co-
reference/be universally inferentially competent with respect to n. This can naturally
be expressed by prefixing (7.3.1) with the � operators, hence quantifying over all
actual worlds:

�Ki(µ(n) = µ(n′))
for either n and all co-referring n′ or for only n and n′. By (7.2.5), this implies

�i(µ(n) = µ(n′)) (7.3.3)
As is the case in regular QEL, formulas with the knowledge operator Ki does not

in general allow for existential generalization. As the �i operator can be defined in
terms of Ki and �, it is natural that the lack of generalization also applies in this
case. In particular, it is worth noting that (7.3.3) does not imply

∃x�i(µ(n) = x)

the importance of which will become evident in the following section.
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Sk Application
Making Definition 5.15 context-dependent again requires only a small change:

Definition 7.8 (Sk Application). Agent i can apply name n in context Sk in
model M iff

M,ωk |=v ∃xKi(µ(n) = x) (7.3.4)
J

As for contextual inferential competence, the notion of Sk+Sj application denotes
the conjunction of Sk and Sj application, and the notion of S1 + · · · + Sn is called
universal application. Universal application can be captured by

�∃xKi(µ(n) = x), (7.3.5)

as the truth of (7.3.5) requires i to be able to apply n in every context, by the �
operator.
This notion of competence is the strongest one definable in terms of application

in C�2QEL models. The competence type may be defined in four ways, using each of
the two necessity operators and both de dicto and de re type formulas:

∃x�Ki(µ(n) = x) (7.3.6)

�i∃xKi(µ(n) = x) (7.3.7)
∃x�iKi(µ(n) = x) (7.3.8)

All four variations are equivalent. From the remarks made in the previous section,
it can be seen that both (7.3.6) and (7.3.8) imply, and are implied by

∃x�i(µ(n) = x) (7.3.9)

As the de re formulas imply their de dicto counterparts, it is further the case that
(7.3.6) implies (7.3.5) and (7.3.8) implies (7.3.7). As �i has a wider scope than �,
(7.3.8) implies (7.3.5).
As was remarked in the previous section, (7.3.3) does not imply (7.3.9). This is an

important feature of the context models, as it also reflects contextual dissociation of
the two competence types. If the implication held, the system would be inconsistent
with the empirical findings reported in (Marconi, 1997).

Implicational Aspects As in the mono-contextual case, implicational relationships
hold between various conjunctions of competence types. The relationships discussed
in section 5.5.2 carry over to the contextual case, when implications within a single
context is regarded. However, where the agent possess these different competence
types in different contexts, this is no longer the case.
In particular, it may be noted that where agent i can apply n in Sk and can apply

n′ in Sj, this does not imply that i is inferentially competent with n and n′ in either
context. A counter-example to this implication is presented in the analysis of the
following section.
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7.4 Frege’s Puzzle with Contexts
Everything is now ready to handle the objection from section 6.1.1 to the analysis
of Frege’s Puzzle in terms of application. The intuitive objection rested on the idea
that the astronomers where able to apply names to Hesperus and Phosphorus, but
would be informed of their co-reference an identity statement.
In order to set the stage, let M be a C�2QEL model with S = {S1, S2} and actual

worlds ω1 and ω2. One may regard S1 as the morning context and S2 as the evening
context from the astronomers example. Include names np (‘Phosphorus’) and nh
(‘Hesperus’), and the object v (the planet Venus). Let

M,ωk |=v (µ(np) = v) ∧ (µ(nh) = v)

for k = 1, 2 in order for the two names to co-refer in the actual worlds. This is
in accordance with the rigidity requirement, (7.1.1) above. Next, add constants for
Hesperus, h, and Phosphorus, p, with the requirement that

M,ωk |=v (h = v) ∧ (p = v)

i.e. that Hesperus, Phosphorus and Venus are in fact the same object. That this
identity holds in both actual worlds complies with the requirement of incontingent
object identity across actual worlds, viz. (7.1.2) above.
The objection further dictates that the agent is able to identify both Hesperus and

Phosphorus in the appropriate situations and in those cases apply the appropriate
names. Thus assume that

M,ω1 |=v ∃xKi((p = x) ∧ (µ(np) = x)) (7.4.1)

in order for agent i to be able to identify Phosphorus in the morning and apply np
to it, and

M,ω2 |=v ∃xKi((h = x) ∧ (µ(nh) = x)) (7.4.2)
for the same to be possible for the agent regarding Hesperus in the evening.
The problematic contradiction in the objection follows from the fact that the

astronomers did not know that names np and nh co-refer. Yet, if the further as-
sumption

M,ωk |=v ¬Ki(µ(np = µ(nh)) (7.4.3)
is required, a model can still be constructed satisfying all the above assumptions,
hence providing an example showing Millianism consistent with the objection. Such
a model is illustrated in Figure 7.4.1.
The model can be constructed by requiring that v, h, p, µ(nh) and µ(np) are

interpreted as the same object across actual worlds, while requiring that these vary
over at least one epistemic alternative. Specifically, v, h and µ(nh) should vary in
S1 and v, p and µ(np) should vary in S2.
Where W = {ω1, ω2, w1, w2} with w1 ∈ Si1 and w2 ∈ Si2, an interpretation assign-

ing values as presented in the following table will ensure that M will satisfy (7.4.1),
(7.4.2) and (7.4.3) above. This is also illustrated in (Figure 7.4.1)
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Figure 7.4.1: A C�2QEL model where i can apply both np and nh, but is not inferentially com-
petent with regard to the two names.

I ω1 ω2 w1 w2
h d d d′ d
p d d d d′

v d d d′ d′

µ(nh) d d d′ d
µ(np) d d d d′

In this case,
M,ωk 6|=v Ki(µ(np) = µ(nh))

and hence an assumption of lacking inferential competence does not result in a con-
tradiction.
The key point here is that as agent i is not inferentially competent with respect

to the two names, i would be informed by being told that the two names co-refer.
Further, as the agent is able to identify the referent of each name in the appropriate
context, the agent is able to use each name in the appropriate context, or act on
information containing it. If, for example, asked to point to Phosphorus in the
morning, agent i would be able to do this. Yet, the two names may still differ in
cognitive value to the agent, as the agent is not fully informed. As the construction
shows, this is not inconsistent with Millianism.
That the agent can be informed by the true identity statement while being ref-

erentially competent in each context stems from the fact that the agent is unable
to identify the names as co-referring across contexts. For all i knows, it is possible
that the two names does not refer to the same object. This is reflected by the model
satisfying

♦i(µ(np) 6= µ(nh)).

From this analysis it can be seen that the objection smuggles into the conclusion
more information on the agent’s behalf than was introduced in the premises: S1
application of np and S2 application of nh was assumed, and it was objected that
this lead to a contradiction, since the agent should be informed by the true iden-
tity statement µ(np) = µ(nh). But for a contradiction to be derived, either S1 or
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S2 knowledge of co-reference is required. However, such knowledge of co-reference
cannot be validly concluded from the assumed premises. Therefore, the problematic
contradiction cannot be derived.
The objection has thus been elucidated as a fallacious argument, the fallacy of

which consists in using different requirements with respect to what information is
available to the agent in premises and what information is available in the conclusion.
Hence, the above analysis can be seen as a case of an informational analysis of a
problem from the philosophy of language, the structure of which is made clear by
focusing on the informational content available to the agent in virtue of his semantic
competence.
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8 Conclusions and Further Work
As stated in the introduction, this thesis sought to achieve two aims:

1. To construct a formal theory of semantic competence, and

2. To show that the formal theory could be used as an useful analytical tool in
uncovering the informational structure behind problems from the philosophy
of language.

Both these aims have been achieved.
The first aim was achieved by initially, in chapter 2, outlining a basic theory of

meaning for proper names, Millianism, along with the most well-known objections
against it, most notably Frege’s Dilemma. The simple theory of Millian meaning was
taken to be the theory of meaning for which a theory of semantic competence was
sought. This endeavor was also commenced in chapter 2: three different philosophi-
cal theories of semantic competence were evaluated in order to find one which allowed
for an objective, inter-subjective comparison of competence levels. The most viable
of the theories considered was the conceptual theory of lexical competence from
(Marconi, 1997). Chapters 3 and 4 discussed propositional and quantified epistemic
logic from both a philosophical and a modeling perspective, and a general complete-
ness result was shown for many-sorted extensions of QEL. This set the stage for
chapter 5, which was dedicated to modeling a simplified version of Marconi’s theory.
This was done using a two-sorted extension of QEL, where a suitable model-class
was defined and a meaning function was added. Based on the results in chapter
4, a sound and complete axiom system was presented, and a logic representing the
formal theory had therefore been found. Chapter 5 further presented a validation of
the formal theory. It was shown that both the essential ontological properties as well
as the competence types from Marconi’s theory were present. It was further shown
that the formal counterparts of the competence types respected the dissociation of
those from Marconi’s theory. Thereby, the first aim was accomplished.
To accomplish the second aim, chapter 6 focused on proof on concept. In chapter

6, the model was applied to each of the two disjuncts of Frege’s Dilemma. This was
done by evaluating the arguments while focusing on the epistemic situation of the
agent, i.e. the agents level of semantic competence. It was concluded that once the
underlying informational structure of the discussed situations was revealed, neither
disjunct proved to be a problem for the Millian theory of meaning. Thereby, the
second aim was accomplished.
Yet, an objection was raised to one of the proposed solutions in chapter 6. In

order to show that this objection was not fatal for the proposed analysis, chapter 7
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was devoted to the construction of a contextual theory of semantic competence. The
notion of contexts was incorporated into the models for semantic competence, and
the possibilities for finding a complete axiomatic system was discussed, but no com-
pleteness result was provided. Therefore, a formal theory, i.e. a logic, for contextual
semantic competence was not found. However, the model-theoretic machinery was
used to re-analyze the problematic case from chapter 6. It was shown that when the
situation was modeled in a contextual model, the epistemic analysis of the disjunct
again showed the Puzzle about Identity was in fact unproblematic for the Millian
view.

Overall, the constructed formal models for semantic competence have been shown
to elucidate informational aspects of the problems posed to the philosophy of lan-
guage by Frege’s Dilemma. In particular, once the informational structure of the
problems was clear, it was shown that each argument was far from being as decisive
against Millianism as has been the mainstream view in 20th century philosophy of
language.

From these conclusions, the present thesis can be seen as supporting two more
general lessons with respect to philosophy and mathematics. First, the thesis sup-
ports the view that formal logics, and in particular formal non-classical logics such
as epistemic logic, can be useful as mathematical modeling tools. As a modeling
tool, epistemic logic can be used for qualitative modeling of human cognition and
cognitive structures, explicitly expressing the informational content of an agent’s
epistemic situation. This allows for a stringent, transparent analysis of the infor-
mation content, where the content has tangible structure. As has been illustrated,
such models can be used in the analysis of certain philosophical problems, but it
is conjectured that such modeling tools will also be useful in the broader field of
empirically based research in cognitive science and neuropsychology.

Secondly, the thesis supports the view that formal methods are useful in philosoph-
ical analysis. The application of formal methods encourages precision of concepts,
and may thus be used to tether intuitions. Providing stringent definitions of used
concepts is useful for elucidating nuances which may otherwise be overlooked. In
the present case, the first proposed resolution of Frege’s Dilemma rested on exactly
such insights: the formal notions of semantic competence, meaning and informa-
tional content showed exactly why the argument was fallacious. The use of formal
models further made it easy to see that the proposed objection included a parameter
not accounted for in the models used for the analyses, namely contexts. If guided
solely by natural language intuitions, it is not clear whether the cause of the problem
nor the solution would have been noticed. This transparency is a direct result of
applying formal methods: had Frege had the formal tools available today, the first
chapters of many modern textbooks on the philosophy of language may have looked
very different from the way they do today.
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8.1 Venues for Further Research
The formal theory of semantic competence developed through this thesis is a first
stab at developing such a theory, but has already been shown useful. Apart from
hopefully showing the usefulness of epistemic logical modeling to elements of em-
pirical cognitive science, the formal framework, or extensions of it, is conjectured to
be useful in many topics from the philosophy of language and the theory of ratio-
nal agents and communication. In this final section, some such venues for further
research are outlined.

A Logic for Contextual Semantic Competence An open problem from the present
thesis is whether it is possible to find a complete axiomatic system describing the
class C�2QEL. A complete logic for this model class would provide a formal theory for
contextual semantic competence.

Extending the Agent Language As mentioned in section 5.4.2, the two-sorted
logic used as a modeling tool is limited in the features it can express. As meaning
is assigned by a first-order function, if the agent language was extended to include
lexical items for predicates, these could not be assigned an extension. The language
is therefore not expressible enough to model semantic competence with respect to
anything but the most basic terms from natural language: proper names.
In order to analyze The Problem of Substitutivity mentioned in section 2.1.3, or

Kripke’s Puzzle about Belief, cf. (Kripke, 1979), the agent language should be able
to express sentences involving intentional contexts, like that of belief. Analyzing
the Problem of Substitutivity could lead to conclusions regarding which competence
levels allows for the inference, and which do not. Given that Kripke’s puzzle is like
the Problem of Identity in structure, it is likely that an analysis analogue to that
presented here would shed light on which answers the question posed by Kripke
should be given, depending on the competence level of the agent in question.

Non-Denoting Terms and Doxastic Attitudes The present approach has focused
on semantic competence solely in the light of knowledge. As an intentional attitude,
knowledge is very strict, which implies that the types of competence types modeled
are stronger than necessary. A focus on weaker operators would give a more fine-
grained view on semantic competence. One natural choice would be to weaken the
S5 knowledge operator to a KD45 belief operator, or to use the various operators
presented in (Baltag and Smets, 2008).
If an approach using weaker modalities is combined with non-constant domain

models, this could be used to model individual concepts of non-existing objects. This
could possibly shed light on problems of reference to non-existing objects mentioned
in section 2.1.3. In particular, such an approach could shed light on the cognitive
value of such empty names, and hence on the apparent understanding of such in
communicational contexts. Further, as such understanding of proper names will
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have no external meaning, a formal modeling of these aspects could very well be put
in relation to the semantic internalism/externalism debate, and possibly provide
novel insights in this regard.

Multi-Agent Situations The formal apparatus presented has been defined for mul-
tiple agents, yet no multi-agent situations have been analyzed. Extending the formal
framework with announcement operators, cf. (van Ditmarsch et al., 2008), will re-
sult in systems in which one could investigate the effect varying competence levels
have on communication in multi-agent settings. Using such an approach, it would
be possible to investigate to which degree agents understand one another when their
understanding of the language in which they communicate vary. This would further
lead to a more natural interpretation of announcement logics, as such do not incor-
porate the agents’ understanding of the language by which the announcements are
mediated.
Adding the perspective of what information an agent understands when an an-

nouncement is made would also have effects on the type of actions agents can perform
after being informed. In order to investigate which competence levels are required for
which type of action could be evaluated by adding an agent language to a framework
like the Logic of Rational Agents, LORA, cf. (Wooldridge, 2000). This framework
already incorporates certain communicational aspects, while ignoring the mediating
language.

Becoming Competent Adding announcement operators would further allow in-
vestigations of competence acquisition. In this respect, it could be investigated which
type of knowledge and updates would allow for an agent to become more compe-
tent with lexical items. This has informally been discussed in relation to Frege’s
Dilemma, where it was seen that, under certain circumstances, the agent became
inferentially competent after an announcement, cf. e.g. 107. Investigating which
kinds of situations and updates allow for an agent to become referentially competent
with a name is a different problem, and it is conjectured that certain negative results
could be shown – in particular, that there exists no universal update form which
will result in the agent becoming referentially competent with a given word. If this
is so, then an interesting problem regarding the human capability of obtaining such
competence presents itself.

Formalizing Theories of Reference The reference relation underlying the mean-
ing function µ has in the present been ‘black boxed’. Yet, the type of reference
assumed will have an effect on the possibilities for obtaining referential competence.
For example, if an indirect theory of reference is assumed, such that the reference
of a proper name is determined by some definite description, the negative result
mentioned above might dissolve. On the other hand, if a direct theory of reference,
like a causal theory of reference (Kripke, 1980) invoking a division of linguistic la-
bor (Putnam, 1975), is assumed, such a negative result might seem very natural.
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This aspect could be investigated by adding a branching time aspect and finding an
appropriate way to model reference fixing by either dubbing or expert opinion. In
order to model agents knowledge of the existence of reference fixing experts, the ex-
pressibility of epistemic term-modal logic, e.g. (Rendsvig, 2010), would be required.
The extension of chapter 7 already allows for one way of modeling experts: an agent
being able to identify an object in the largest number of contexts can be said to be
an expert with respect to that object, and the extension of the appropriate name
should therefore be fixed in accordance with this agent’s knowledge.
In such a framework, reference indeterminacy could be investigated. This could be

put in relation to the meaning indeterminacy of Dummett, e.g. (Dummett, 2006).
In this case, it could be imagined that, as time passes in the model, proper expert
knowledge will stop being available, and the name will stop have a determinate
reference. In this case, it could be investigated which kinds of competence agents
can have with respect to such a name. It could be imagined that the types of
competence applicable will be closely related to those of empty names and doxastic
competence types.

It is my hope that I will get the opportunity to work on some of these fascinating
topics.
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