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Abstract

We take a logical approach to threshold models, used to study

the diffusion of e.g. new technologies or behaviours in social net-

works. In short, threshold models consist of a network graph of

agents connected by a social relationship and a threshold to adopt

a possibly cascading behaviour. Agents adopt new behaviour when

the proportion of their neighbours who have already adopted it

meets the threshold. Under this adoption policy, threshold models

develop dynamically with a guaranteed fixed point. We construct

a minimal dynamic propositional logic to describe the threshold

dynamics and show that the logic is sound and complete. We then

extend this framework with an epistemic dimension and investi-

gate how information about more distant neighbours’ behaviours

allows agents to anticipate changes in behaviour of their closer

neighbours. It is shown that this epistemic prediction dynamics is

equivalent to the non-epistemic threshold model dynamics if and

only if agents know exactly their neighbours’ behaviour. We fur-

ther show results regarding fixed points and convergence speed,

and provide a partial set of reduction laws, venues for further re-

search, and graphical representations of the dynamics.

1 Introduction

An individual’s actions or opinions may be influenced by

the actions of people around her [7]. The way a new

product or fashion gets adopted by a population depends

on how agents are influenced by others, which in turn de-

pends both on the way the population is structured and

on how influenceable agents are.

This paper focuses on one particular account of so-

cial influence, the notion of “threshold influence” as pre-

sented in e.g. [5]. Threshold influence relies on a sim-

ple imitation or conformity pressure effect: agents adopt

a behaviour/product/like/fashion whenever some given

threshold of the agents they are related to in their social

network, their neighbours, have adopted it already. In this

sense, investigating diffusion is investigating how agents

are locally influenced and how they tend to become more

similar to their neighbours. The so-called threshold mod-

els, first introduced by [6,13], are used precisely to repre-

sent the dynamics of diffusion under threshold influence.

This type of models has received much attention in recent

literature [5,8,11,16].

The paper has two main goals. The first one is to de-

sign a logic to represent the traditional view of threshold

influence and to reason about diffusion phenomena in so-

cial networks. This is the topic of section 2. After recalling

standard threshold models in Subsection 2.1, a dynamic

logic for modeling threshold influence within social net-

works is introduced in Subsection 2.2. While conceptu-

ally in line with [4,12,14,15,22] in using logic to model

social influence effects within networks structures, this

framework differs by avoiding the use of static modali-

ties or hybrid logic tools. In this sense, the logic intro-

duced is “minimal”: propositional logic is used to specify

both network structure and agent behaviour, and a single

dynamic modality is used to represent “threshold influ-

ence update”. Moreover, while [4,12,14,15,22] focus on

the limit thresholds of 100% (all neighbours) and non-

0% (at least one neighbour), here any (uniform) adop-

tion threshold can be used, as is standard with respect

to threshold models. Subsections 2.3 and 2.4 exemplify

how the logic allows to reason about clusters, cascading

effects and the minimal seed problem.

The second goal of the paper is to extend threshold

models and their dynamic logic with an epistemic dimen-

sion. This is done in Section 3. Subsection 3.1 introduces

epistemic threshold models and their update procedure.

This corresponds to a conceptual jump from a minimal

modeling of influence as “blind adoption” to a more so-
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phisticated model of it as “informed adoption”. In par-

ticular, the epistemic dimension allows agents to predict

the future development of the dynamics. Subsection 3.2

presents a series of results regarding such “prediction up-

dates”. In Subsection 3.3, an epistemic extension of the

minimal language is presented, together with a partial

set of reduction laws in the standard way of dynamic

epistemic logic [2,19,20]. Section 4 concludes with a dis-

cussion of venues for future research.

2 Threshold Models and their Dynamic

Logic

This section aims is to design a logic to capture the dy-

namic of threshold models. Subsection 2.1 first reminds

the reader of the standard definition of threshold mod-

els, makes explicit some assumptions and fixes some no-

tation.

2.1 Threshold Models for Social Influence

A social network may be seen as a graph, where the

nodes represent agents and the edges represent a binary

social relationship among them. This paper restricts it-

self to finite, undirected connected1 graphs without self-

loops, i.e., considers only symmetric, irreflexive social re-

lationships, like being neighbours or friends.

Definition 1 (Network). A network is a pair (A , N)
where A is a finite set of agents and N : A → P (A )
assigns a set N(a) to each a ∈A , such that:

– a /∈ N(a) (Irreflexivity),

– b ∈ N(a) if and only if a ∈ N(b) (Symmetry),

– for any a, b ∈ A , there is a k such that b ∈ N k(a) with

N k(a) = N k−1(N(a)) (Connectedness).

A threshold model consists of a network together with a

unique behaviour B (or fashion, or product, or “like-able

item”) distributed over A and a fixed uniform adoption

threshold θ . A threshold model represents the current

spread of B throughout the network, while containing

the adoption threshold which prescribes how the current

state will evolve.

Definition 2 (Threshold model). A threshold model is

a tuple M = (A , N , B,θ) where (A , N) is a network,

B ⊆ A is a behaviour and θ ∈ (0,1] is a uniform adop-

tion threshold.

It is assumed throughout this paper that both network

and adoption threshold stay constant under updates.

Thus, the spread of the behaviour (i.e., the extension

of B) at ensuing time steps may be calculated using the

fixed threshold and network structure:

Definition 3 (Threshold model update). The update

of threshold model Mn = (A , N , Bn,θ) is the threshold

model Mn+1 = (A , N , Bn+1,θ) identical to Mn, except

possibly for Bn+1, given by

Bn+1 = Bn ∪ {i ∈A :
|N(i)∩ Bn|
|N(i)|

≥ θ}.

Fact. For any threshold modelM , the successive updates

of M reaches a fixed point in finite time. I.e. for some

n ∈ N, Bn = Bn+1. This follows as A is finite and B is

inflating in n.2

Fig. 1 illustrates how a behaviour spreads step by step

up to the fixed point.

Fig. 1. Diffusion of the gray behaviour with threshold θ ≤ 1
2
.

Model Interpretation. Threshold models and their dy-

namics may be interpreted in two ways. One interpre-

tation assumes that agents are mere automata, their be-

haviour forced upon them by their environment. This in-

terpretation suits models to be used e.g. in epidemiology:

viral infection “just happens”. Alternatively, agents may

be interpreted as being rational and aiming towards coor-

dinating with their neighbours. In fact, the above update

rule corresponds to the best response dynamics of an as-

sociated coordination game [11], with the assumption of

a ‘seed’ set of players that always, possibly irrationally,

play B [5].
1 There exists a path between any two agents. It is not assumed that graphs are complete, i.e. that all agents are directly con-

nected.
2 A set is inflating in n if Bn ⊆ Bn+1 for all n.
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Numerous variations of threshold models exist in the

literature, including infinite networks [11], non-inflating

behaviour adoption [11], agent-specific threshold [8],
weighted links [8] and multiple behaviours [1].

2.2 Minimal Threshold Influence Logic

This section introduces a minimal logic to model the stan-

dard notion of threshold influence. To describe the situ-

ation of a social network at a given moment, the static

language must describe two things: who is related to

whom and who is displaying behaviour B. Both features

are encoded using propositional variables. To describe

the change of situation of a social network, the language

includes a dynamic modality, representing how agents

adopt the behaviour of their neighbours, whenever the

given threshold is reached, i.e., whenever enough neigh-

bours present it.

Definition 4 (Minimal threshold influence language

LT I). LetA be finite and let atoms be given by Φ= {Na b :

a, b ∈A}∪ {Ba : a ∈A}. The language LT I is then given

by:

ϕ := Na b | Ba | ¬ϕ | ϕ ∧ϕ | [adopt]ϕ

Truth is defined in a straightforward way.

Definition 5 (Truth clauses for LT I). Given a model

M = (A , N , B,θ), Na b, Ba ∈ ϕ, and ϕ,ψ ∈ LT I :

M � Na b iff b ∈ N(a)

M � Ba iff a ∈ B

M � ¬ϕ iffM 2 ϕ
M � ϕ ∧ψ iffM � ϕ andM �ψ
M � [adopt]ϕ iff M ′ � ϕ, where M ′ is the update of

M cf. Def. 3.

From this, the following proposition is straightforwardly

obtained.

Proposition 1. For any model M , there exists an n for

which

[adopt]nϕ↔ [adopt]n+1ϕ

for any ϕ ∈ LT I .
3

Proof. The threshold dynamics introduced include only

inflating behaviours, and are therefore guaranteed to

reach a fixed point. I.e., for some n,Mn =Mn+1. Hence

Mn andMn+1 are guaranteed to satisfy the same formu-

las, wherebyM |= [adopt]nϕ↔ [adopt]n+1ϕ.

Axiomatization. As each threshold model in effect is a

propositional logic model, the static logic is captured by

the axioms of propositional logic, with the addition of ax-

ioms capturing the requirements on network structures:

Definition 6 (Network axioms).

¬Naa (Irreflexivity)

Na b↔ Nba (Symmetry)

Na b
∨

G⊆A (
∨

c∈G Nac ∧
∨

c′∈G Ncc
′ ∧
∨

c′′∈G Nc′ c
′′ ∧ · · · ∧

∨

c∗∈G Nc∗ b) (Connectedness)

As the [adopt] modality does only affects the extension

of behaviour B, the axiomatization of the dynamic part

of the logic is straightforward:

Definition 7 (Reduction axioms).

[adopt]Na b↔ Na b (Red.Ax.N)

[adopt]¬ϕ↔¬[adopt]ϕ (Red.Ax.¬)

[adopt]ϕ ∧ψ↔ [adopt]ϕ ∧ [adopt]ψ (Red.Ax.∧)

[adopt]Ba ↔ Ba ∨ (
∨

k∈K

∧

b∈k
Bb),

withK = {k ⊆ {b ∈A : Na b} : |k| ≥ t ·
�

�{b ∈A : Na b}
�

�}
(Red.Ax.B)

The reduction law (Red.Ax.B) utilizes the fact that

threshold model updates are deterministic, as this entails

that whatever change will occur following an update is

pre-encoded before the update. The axiom states that a

will have adopted B after the update just in case she ei-

ther had adopted it before the update, or if she currently

has a large enough proportion of neighbours that have

already adopted it.

Definition 8 (LT I). The minimal threshold influence logic

LT I is comprised of all instantiations of propositional tau-

tologies, the network axioms of Def. 6, the reduction axioms

of Def. 7 and the derivation rule of Modus Ponens (MP).

The logic LT I is sound and complete with respect to the

class of threshold models. As the proof utilizes only well-

known techniques, only a sketch is presented.

Theorem 1. For every ϕ ∈ LT I ,

|= ϕ iff ` ϕ
3 The formula is model relative. To obtain a similar validity over the class of threshold models, the language could be extended

with the Kleene star.
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Sketch of proof. For soundness, it is enough to note that

soundness of the reduction axioms follows trivially from

the given semantics. For completeness, proceed as for

public announcement logic (see e.g. [20, Ch. 7]): Define

a translation t allowing a reduction of all dynamic for-

mulas to static ones, mimicking the form of the reduction

axioms. Then define a complexity measure c forcing t(ϕ)
to be reducible to t(ϕ′)with c(ϕ′)< c(ϕ). To obtain this,

it is enough to tweak the complexity of a dynamic for-

mula to be a “big enough” function of the size of set of

agents A . Defining c of Boolean formulas as in [20, Ch.

7], and
∨

and
∧

by grouping formulas to the left, the

complexity of a dynamic formula needs to be bigger than

c(Ba∨
∨

k∈K

∧

b∈k
Bb) = 3 · |P (A\a)|+ |A \a|. It is therefore

sufficient to set c([adopt]ϕ) := (3 · |P (A\a)|+ |A |) ·
c(ϕ).

Using this fact, one can show by induction on c that

each ϕ is provably equivalent to t(ϕ), and therefore,

by soundness, also semantically equivalent to t(ϕ). Fi-

nally, assuming that a formula ϕ is valid, it follows

that its static translation t(ϕ) is valid too. By complete-

ness of propositional logic, t(ϕ) is a theorem and since

t(ϕ)↔ ϕ is a theorem, ϕ is a theorem too. ut

2.3 Clusters and Cascades

An agent adopting B may be influenced by some of her

neighbours to adopt at the next moment, which in turn

may causes further agents to follow suit. Such chain re-

action is termed a cascade in the literature (see e.g. [5,

Ch. 19]). As threshold model updates always reach a

fixed point, any cascade will eventually stop. However,

a cascade may stop before all agents have adopted, i.e.

without being complete. The following recalls a known

result about how cascading effects are constrained by

the network structure and shows how the suitable con-

straint may be captured by the minimal threshold influ-

ence logic.

Some parts of a network structure may be more

“dense” than others. Strongly connected groups of agents

are more resilient to external influence. E.g., a tightly

knit group may be hard to convert to a particular opinion

if all group members support one another in disagree-

ing with the opinion. Tightly connected components of a

network might block the diffusion of a behaviour when

it stems from outside this component. In other words,

dense components of a network may prevent complete

cascades and the denser a group, the better it resists

change from the outside. The required precise notion of

a “dense” group is that of a d-cohesive set [11], also re-

ferred to as a a cluster of density d [5]. A cluster of density

d is a set of agents such that for each agent in the set, the

proportion of her neighbours which are also in the group

is at least d. Formally:

Definition 9 (Cluster of density d). Given a network

(A , N) a cluster of density d is any group C ⊆ A such

that for all i ∈ C,

|N(i)∩ C |
|N(i)|

≥ d.

Notice that any network will contain exactly one cluster

of density 1, namely the group A , and that each single-

ton {a} ⊆A is a cluster of density 0 (by irreflexivity).

Example: Clusters. Let modelM given as illustrated be-

low, with B = {d}. In this model, C = {a, b, c} is a cluster

of density 2
3
, in which no member belongs to B.

Fig. 2. A social network with a cluster of density 2
3
.

The minimal language can be used to express the ex-

istence of a cluster. Notice that if C is a cluster, then for

each a in C , there is a big enough subgroup of C which

are a’s neighbours. This is expressible in LT I .

Proposition 2. The group C is a cluster of density d in

(A , N) iffM = (A , N , B,θ) satisfies

∧

i∈C

∨

G′⊆C

∧

j∈G′
Ni j (1)

for G′ ⊆A such that |G′|
|{ j:M|=Ni j}| ≥ d.

The proof may be found the appendix.

Given Proposition 2, it is easy to see that the follow-

ing characterizes the existence of a cluster of density d

in which all members have the property described by a

formula ϕ ∈ LT I .

∃Cd(ϕ) :=
∨

G⊆A

∧

i∈G

∨

G′⊆G

∧

j∈G′
(Ni j ∧ϕ)
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for G′ such that |G′|
|{ j:M|=Ni j}| ≥ d.

Example: Clusters, cont.. The model illustrated in Fig.

1 contains a cluster C = {a, b, c} of density 2
3
, and more-

over, no agents in C have adopted behaviour B. Hence,

the model should satisfy

∃C 2
3
(¬Bi) :=

∨

G⊆A

∧

i∈G

∨

G′⊆G

∧

j∈G′
(Ni j ∧¬Bi). (2)

To verify this, assume C is the group required to sat-

isfy the outmost disjunction. Then there is a G′ such that
|G′|

|{ j:Ni j}| ≥
2
3

for whichM satisfies

∧

i∈C

∨

G′⊆C

∧

j∈G′
(Ni j ∧¬Bi). (3)

To see this, regard first agent c, for whom it should be

satisfied that
∨

G′⊆C

∧

j∈G′
(Nc j ∧¬Bc)

As |{ j :M |=Nc j}| = 3, we must identify a group G′ ⊆ C

with |G′| ≥ 2 such that for all j ∈ G′,M |=Nc j. Such a G′

exists, being {a, b}. Finally, indeedM |=¬Bc , and hence

the conjunct for c is satisfied. Similar reasoning shows

that the conjuncts for a and b also hold. This gives us

(3), and hence (2).

The following theorem [11],[5, Ch.19.3] character-

izes the possibility of a complete adoption cascade in a

network:

Given threshold θ , if the set of agents that have

adopted B is A, then all agents will eventually

adopt B if, and only if, there does not exist a clus-

ter of density greater than 1− θ inA\A.

As the existence of clusters can be expressed in LT I , this

theorem can be given the following succinct form:

Theorem 2. LetM = (A , N , B,θ) and n ≥ k for k such

thatMk =Mk+1,

M |= [adopt]n
∧

i∈A

Bi ↔¬∃C1−θ (¬Bi).

2.4 The Minimal Seed Problem

In recent literature on diffusion processes, the so-called

minimal seed problem [3] has received much attention

[9,10,18,17,21]. Stated loosely, the problem requires

finding a smallest possible group that when converted

to the new behaviour will eventually ensure a complete

cascade. It is known that the problem is NP hard [10],
and the typical approach to the problem is to define

greedy and effective algorithms to approximate an an-

swer within a reasonable bound of error.

Given the completeness of the introduced logic, the

minimal seed problem can be solved without error,

though the procedure may be computationally costly.

Given a specification of a network by a propositional for-

mula ϕ, it can be checked for which smallest C ⊆ A it

holds that

ϕ `
∧

i∈C

(Liβ)→ 〈adopt〉n
∧

j∈A

(Liβ),

where n is the longest non-cyclic path in the network

specified by ϕ, and hence an upper bound on the num-

ber of updates required before reaching the fixed point.

3 Epistemic Threshold Models and Their

Dynamic Logic

The previous section defined a minimal logic for model-

ing the evolution of threshold models. In such models, it

is assumed that agents only react to their environment:

they are always influenced by their direct neighbours and

only by them. They are not considering options, they are

not anticipating behavioural changes, they are never in-

fluenced by anybody further away than who they are in

direct contact with. We will refer to this type of influence

and adoption as “blind”.

In what follows, the standard threshold models and

the corresponding logic will be augmented to produce

a more refined adoption policy. This section investigates

what happens when agents may know more than only

the present behaviour of their direct neighbours. Provid-

ing agents with more information about the current state

of diffusion in turn allows agents to anticipate change of

behaviour in others.

3.1 Threshold Models with Uncertainty

Consider the dynamics illustrated in Fig. 2, run accord-

ing to blind adoption. If one assumes that nodes are not

5
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Fig. 3. An epistemic threshold model with 5 states and epistemic relations drawn for sight 1 (bold lines), sight 2 (dotted lines)
and sight k ≥ 3 (disconnected). Reflexive loops are omitted. With sight 1, agent a does not know the behaviour of c, but with
sight 2, she does.

merely blindly influenced by their neighbours, but rather

are rational agents seeking to coordinate, the dynamics

seem to misfire. In particular, if network and behaviour

distribution are known and the new behaviour is consid-

ered the most valuable, the choice of b not to change

during the first update is irrational. As b knows that d

has adopted, he knows that c will adopt during the next

update, whereby b should also know that he will be bet-

ter off in round 2 if he, too, has chosen to adopt. One way

to represent this “predictive rationality” is to add an epis-

temic dimension to threshold models and define a new,

predictive, update mechanism.

In non-epistemic threshold models, agents set, social

network, current distribution of behaviours and thresh-

old may be seen as being common knowledge.4 While

this is a non-neglectable simplifying assumption, it is jus-

tified by the fact that in the associated dynamics, only

behaviours of an agent’s direct neighbours affect her be-

haviour. Hence, further knowledge of the network struc-

ture itself is irrelevant.

Theoretically, agents could be uncertain about any

combination of the parameters that specify a threshold

model. However, this paper restricts uncertainty to a

unique parameter, namely the distribution of a given be-

haviour among agents more or less closely related within

the network structure. In other words, the radius within

which agents know the behaviour of others, their “line of

sight”, may vary.

Uncertainty is modeled in by introducing equiva-

lence relation to partition a set of threshold models (cf

Def. 2) into epistemic alternatives. M denotes an epis-

temic threshold model with typical stateM , a threshold

model.

Definition 10 (Epistemic threshold model w. sight k).

Let an epistemic threshold model with sight k be a tuple

M= (domM, {∼i}i∈A ) where

– domM is a set of threshold models such that for all

M ,M ′ ∈ domM, if M = (A , N , B,θ) and M ′ =
(A ′, N ′, B′,θ ′), thenA =A ′, N = N ′ and θ = θ ′.

– For each i ∈ A , ∼i is an equivalence relation on domM
such thatM ∼i M ′ iff ∀ j ∈ N k(i)∪ {i} : j ∈ BM ⇔ j ∈
B′M ′ , where N k(i) is the set of k-reachable neighbours of i.

The constraint on the domain of epistemic threshold

models prevents uncertainty about the network structure

or the adoption threshold, while the constraint on the

indistinguishability relations implies that agents always

know the behaviour of themselves and all agents within

distance k in the network structure.5 Fig. 3 illustrates an

epistemic threshold model.

Informed dynamics. Notice that it is no problem to ap-

ply the model update procedure defined for threshold

models to the epistemic extension. One only needs to

1) update the set B in each state according to the de-

fined rule, and 2) update the indistinguishability rela-

tions in order to satisfy the definition of epistemic net-

work model. Such an update does not utilize the poten-

tial knowledge of agents.

Definition 11 (Blind adoption update). Let Mn be an

ep. threshold model. The blind adoption update ofMn pro-

ducesMn+1, identical toMn in all respects except that

– For M = (A , N , Bn,θ) ∈ Mn, Bn+1 := Bn ∪ {i ∈ A :
|N(i)∩Bn|
|N(i)| }

– All relations ∼i are restricted to satisfy the requirement

for epistemic threshold models.
4 Alternatively, one may interpret standard threshold models as letting each agent know exactly the behaviour of their neigh-

bours, see below.
5 As each threshold model indirectly includes a valuation for the propositional variables, eachM can be recast as a standard S5

Kripke model with an associated global threshold.
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Fig. 4. The learning process for agent d (bottom center) under blind adoption with threshold θ ≤ 1
2
. With sight radius 1, the

epistemic threshold model contains at most the 8 depicted states. The last states to reach fixed points at time 5 are states 3 and
5 from the left. Epistemic relations are drawn only for d to simplify representation. Note the development of the indistinguisha-
bility relation: as the updated ∼′d is a restriction of ∼ d to states where both c and e’s behaviours are identical, d learns about the
distribution. Learning may or may not be complete: compare the development of states 2 and 3.

As blind adoption does not utilize the introduced uncer-

tainty, all states in an epistemic threshold model will de-

velop exactly as they would have as isolated threshold

models. Learning in a blind adoption scenario is illus-

trated in Fig. 4.

For agents to utilize their knowledge, we introduce

a refined update procedure, by which agents use the in-

formation available about their surrounding agents’ be-

haviour. In particular, this additional information allows

agents to partially anticipate the system’s development.

The definition recursively defines higher orders of pre-

diction, taking as base blind adoption. Hence, a 1st level

predictor assumes all others are blind adopters, a 2nd

level predictor assumes all others are 1st level, etc. Dif-

ferent prediction levels produce different conjectures re-

garding the next state, as is exemplified below.

Definition 12 (k-level prediction update). Let Mn be

given and let Bn be from M ∈ domM. The k-level pre-

diction update ofMn producesMn+1, identical toMn in all

respects except that

– The k-level prediction update of Bn is given by

Bk
n+1 := Bn ∪ {a ∈A :

|N(a)∩ KaBk−1
n+1|

|N(a)|
≥ θ}

where KaBk−1
n+1 is the set of agents such that a knows that if

these agents updated in accordance with k−1 level predic-

tion update, then they will adopt in the next round. The set

is given by

KaBk−1
n+1 := { j ∈A : ∀M ′ ∼a M , j ∈ Bk−1

n+1}

with B0
n+1 the behaviour set obtained if blind adopt update

is applied toM .

– All relations ∼i are restricted to satisfy the requirement

for epistemic threshold models.

Fig. 5 gives an example of k-level prediction dynamics.

Two important features about prediction update are

stated in the following proposition. Point 1 captures that

agents possess knowledge of a deterministic dynamics:

if they are able to make predictions, then these predic-

tions are guaranteed correct. Point 2 captures that agents

may still be surprised by future developments: if agents

in N k(a) choose to adopt due to influence from agents in

A\N k(a), a will not possess the required information to

predict their behavioural change.

Proposition 3. Let M be a k-sight epistemic threshold

model with actual worldM = (A , N , B,θ). Then

1. Predictions are correct: KaBm
n ⊆ Bm

n for all a ∈ A , all

m, n ∈ Z+.

2. Predictions are not necessarily locally complete: possibly,

Bm
n ∩ N k(a) 6⊆ KaBm

n .

Proof. 1.: If j ∈ KaBm
n , then j ∈ B′ m

n for all M ′ ∼a M .

Hence j ∈ Bm
n . 2.: For an example, see Fig. 4 above.
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Fig. 5. Prediction dynamics for prediction levels k ∈ {0, 1,2}, with threshold θ ≤ 1
2

and sight 2. Full arrows show transitions for
level 0, dotted arrows level 1 and dashed arrows level 2. Loops indicate fixed points. Bold lines represent indistinguishability. All
agents learn the distribution after one update. The same fixed point is reached regardless of prediction level, but is reached
faster. Prediction levels 1 and 2 are step-wise identical, cf. Thm. 4.

3.2 Results: Properties of Prediction Update

One immediate worry regarding the combination of ex-

tended sight and prediction dynamics may be whether

these in fact correspond to blind adoption in a more con-

nected network. However, as the following proposition

shows, this worry is unwarranted.

Proposition 4. Prediction dynamics with sight k is not

equivalent with blind adoption dynamics with all k-

reachable neighbours set to also be direct neighbours.

Proof. The development of the left-most state of Fig. 5

serves as an example. For k = 2: if a was direct neigh-

bours with c, then c would not be sufficiently influenced

by d to adopt. ut

The following Lemma is used in the proofs of the below

theorems. It shows two important features of prediction

dynamics. First, increasing agents’ predictive power ei-

ther leaves the dynamics unchanged or reduces the num-

ber of updates required before meeting the fixed point.

This was illustrated in Fig. 5. Secondly, it shows that an

increase in prediction power only makes agents more in-

formed.

Lemma 1. For any n, the following hold if m≥ k:

1. Increased prediction does not slow dynamics: Bk
n ⊆ Bm

n .

2. Knowledge is inflating in prediction level: KbBk
n ⊆ KbBm

n .

The proof of Lemma 1 and the following propositions

may be found in the appendix.

Our first main result pertaining to prediction dynam-

ics show that providing agents with additional informa-

tion about the deterministic dynamics does not change

the outcome. A corollary to this theorem is that the clus-

ter theorem also applies to the epistemic dynamics.

Theorem 3. All prediction dynamics are fixed point equiv-

alent to blind adoption dynamics. Specifically, for all k, if

Bk
n = Bk

n+1 and B0
m = B0

m+1, then Bk
n = B0

m.

Our second main result relates the range of sight with

the capabilities acquired by higher levels of prediction.

It shows that dynamics run using levels of prediction

greater or equal to the agents’ line of sight will all be

equivalent. Not only will they reach the same fixed point,

but will also be step-wise equivalent. In other word, ex-

tra anticipation power will be superfluous. See Fig. 5 for

an example.

Theorem 4. Prediction is limited by sight. If ∼i is defined

using N k(i), then if m≥ k− 1, then Bm
n = Bk−1

n , for all n.

As a corollary to Theorem 4, we obtain a relation be-

tween between blind dynamics and prediction dynamics.

Specifically, prediction dynamics are step-wise equivalent

to blind dynamics just in case the line of sight is set to 1.

3.3 Epistemic Threshold Influence Logic

As in the previous section, after introducing the epistemic

version of our threshold models, a logic to reason about

how those models change.

8
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The minimal language LT I is extended by adding

the standard Ka modality reading “agent a knows that”

and replacing the dynamic modality [adopt] by dynamic

modalities [adoptk], one for each prediction level k. As

a corollary to Theorem 4 , we see that the relevance

of prediction levels is limited by the smallest k such

that all agents are k-reachable from each other. This k

will always be less than |A |. This means that given A ,

the language can be restricted to [adoptk]-operators for

k < |A |.

Definition 13 (Epistemic threshold influence lan-

guage LKT I). Let A be a finite a set of agents and

k < |A |. Let the set of atomic propositions be given by

ϕ = {Na b : a, b ∈ A} ∪ {Ba : a ∈ A}. The epistemic

threshold influence language (LKT I ) is defined as follows:

ϕ := Na b | Ba | ¬ϕ | ϕ ∧ϕ | Kaϕ | [adoptk]ϕ

Definition 14 (Truth clauses for LKT I). Given an epis-

temic threshold model M = (domM,∼i)i∈A , a thresh-

old model M = (A , N , B,θ) ∈ domM, and formulas

Na b, Ba ∈ ϕ, and ϕ,ψ ∈ LKT I :

M,M |= Na b iff b ∈ N(a)

M,M |= Ba iff a ∈ B

M,M |= Kaϕ iff for allM ′ ∼a M ,M,M ′ |= ϕ
M,M � [adoptk]ϕ iff M′,M ′ |= ϕ, where M′ is the k-

level prediction update ofM withM ′ identical toM except

with updated B, cf. Def. 12.

Towards an Axiomatization. Where the reduction laws

for the non-epistemic logic were simple, the interplay be-

tween the [adoptk] and Ki modalities are far more sub-

tle.

Before reaching a fixed point, any prediction update

performs two actions simultaneously. Firstly, it induces a

factual change in a subset of the propositional variables

by changing the truth values of some Bi from false to

true. Secondly, it enforces an epistemic update, whereby

agents learn the new behaviour of agents within their

range of sight. The combination of these two roles with

the in-built asymmetry that Bi may only turn from false to

true makes constructing a complete set of reduction laws

more complicated than in the case of blind adoption. The

task is as of yet unfinished, but below we present reduc-

tion laws for the essential cases.

Claim 1 (Reductive validities). The following formulas

are valid over the class of epistemic threshold models.

1. [adoptk]Ba ↔ Ba∨(¬Ba → Ka[adoptk−1](
∨

k∈K

∧

b∈k
Bb)),

K = {k ⊆ {b ∈A : Na b} : |k| ≥ t ·
�

�{b ∈A : Na b}
�

�}.
2. [adopt0]KaBb ↔ KaBa ∨ (Na b∧¬Bb ∧ [adopt0]Bb)∨
(
∨

j:N k
a j N ja ∧¬B j ∧ Ka([adopt0]B j → Bb))

3. [adopt0]Ka¬Bb ↔ (Na b ∧ ¬Bb ∧ [adopt0]¬Bb) ∨
(
∨

j:N k
a j N ja ∧¬B j ∧ Ka([adopt0]¬B j →¬Bb))

The first formula reflects the recursive nature of pre-

diction dynamics, in the sense that level k prediction

is reducible to knowledge of the behaviour of level

k − 1 predictors. Using this law, formulas containing

[adoptk] modalities may be reduced to ones containing

only [adoptk−1] modalities. As [adopt0] is independent

of further prediction levels, the reduction axioms from

LT I may be used to reduce it to a propositional formula.

The last two formulas, which allow pushing the

[adopt0] modality into the scope of Ka operators, illus-

trate the problem of obtaining general laws. Such laws

must be sensitive to negations of propositional variables

under the scope of knowledge operators, as knowledge

of ¬Bb may be lost, whereas knowledge of Bb is perma-

nent. We trust that a complete set of reduction laws is

obtainable, but that its construction will require a vast

amount of clauses to manage syntactical decomposition.

4 Further Research

A built-in dynamic asymmetry. One particular feature

of threshold models is the strong assumption that once

agents adopt behaviour B, they can not unadopt it. This

essential asymmetry comes attached with both nice dy-

namic properties and with formal difficulties. On the one

hand, since the set of agents adopting the behaviour is

inflating, the dynamics are guaranteed to stabilize.6 Con-

sequently, the set of formulas needed to describe the

dynamics of a given threshold models is finite. On the

other hand, the lack of unadoption creates an asymme-

try between Bi and ¬Bi , as the truth value of Bi can only

change from false to true, while the one of ¬Bi can only
6 Allowing unadoption might lead to looping situations which arise e.g. in the settings of [15,4] in which agents may find

themselves in a situation where they switch forever between two options.
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change from true to false This is reflected e.g. in the dif-

ference between the reduction rules for [adoptk]KaBb

and [adoptk]Ka¬Bb, and results in some difficulty for

getting a generalized reduction rule for negation of arbi-

trary ϕ. While the search for a complete axiomatization

of LKT I is left for future research, this difficulty is an in-

teresting reflection of the built-in asymmetry of threshold

dynamics. The difficulty could be avoided by adopting a

symmetrical dynamics, e.g. by changing the update of be-

haviours from B to B′:

Bn+1 = Bn ∪ {i : |N(i)∩B|
|N(i)| } B′n+1 = {i : |N(i)∩B|

|N(i)| }.

Agent uniformity assumptions. As mentioned in Sec-

tion 2, there exists many variations of threshold mod-

els, including weighted edges and agent-specific thresh-

olds. As such, the present paper only deals with a spe-

cial case of threshold models, and falls neatly between

two existing approaches taken in the logic literature to

date. On the one hand, it is more general threshold-

wise than the works [15,14,22,4], since it allows for any

uniform proportional threshold, but is threshold-wise a

restriction of the logic proposed by [12],where thresh-

olds are agent-relative. The task of logically represent-

ing weighted edges remains untackled, and is an obvious

candidate for future research.

Another uniformity assumption which was made con-

cerns agents’ knowledge. Not only was it assumed that

the network structure and the threshold are common

knowledge, it was also assumed that the minimal knowl-

edge that agents have about their k-distant network

neighbour is uniform, i.e., all agents know (at least)

the behaviour of all agents which are at distance k or

less within the network structure. This assumption cre-

ates another asymmetry: the uniformity concerns only

the minimum amount of knowledge. Some agents might

know more, and hence the total of what they know is still

agent-relative. Again, this asymmetry results in some dif-

ficulty in axiomatization and on could think about the

benefit of adopting one of the two following policies in-

stead: either making the levels of knowledge fully uni-

form among agents, forcing them to know all and only

the behaviour of all agents at distance at most k, or

on the contrary, dropping the uniformity assumption on

the minimal level of knowledge, allowing some agents

to know the behaviour of only some of the k-reachable

agents. These investigations are also left for further re-

search.

Followers or trendsetters? So far, agents are only react-

ing to their environment, they are pure “followers”, they

do not make any reasoned choice. Because of this, the

notion of goal-oriented action, necessary to talk about

whether agents are rational or not, seems to be missing

in the representation given here. This is troubling since

the initial threshold models are naturally representing

some coordination game. What disappeared in this log-

ical treatment is the notion of payoff, and therefore the

notion of “good” or “bad” outcome for the agents. But

another type of change could be defined in a way en-

tirely similar to what has been done in this paper, com-

ing closer to goal-orientedness: adopt something when

you know that if you do, your neighbour will adopt it

in the next round. In this way, agents are not followers

any more but “trendsetters” On the other hand, even the

“follower” type of agents can be seen as goal-oriented

agents, assuming that a certain level of conformity with

their neighbours is their goal.
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Appendix: Proofs

As a notational shorthand, set |C/b| := |N(b)∩C |
|N(b)|

for any set C

and agent b.

Proposition 2. The group C is a cluster of density d in (A , N)

iffM = (A , N , B,θ) satisfies

∧

i∈C

∨

G′⊆C

∧

j∈G′

Ni j (4)

for G′ ⊆A such that |G′ |
|{ j:M|=Ni j}|

≥ d.

Proof. Left to right: Assume C is a cluster of density d in

(A , N). Then by definition, for all i ∈ C , |N(i)∩C |
|N(i)|

≥ d. As

M is based on (A , N), { j : M |=Ni j} = N(i). Hence for

G′ = N(i) ∩ C , |G′ |
| j:M|=Ni j|

≥ d and M |=
∧

j∈G′Ni j. So M sat-

isfies (4).

Right to left: Assume thatM satisfies (4) for some C ⊆ A
and some d ∈ [0,1]. Then for each i ∈ C , there is a G′ ⊆ C with

|G′ |
|{ j:M|=Ni j}|

≥ d, such that for all j ∈ G′,M |= Ni j. As { j :M |=

Ni j} = N(i), it follows that |G′ |
|N(i)|

= |G′ |
|{ j:M|=Ni j}|

≥ d. Moreover,

G′ ⊆ N(i). As also G′ ⊆ C , it follows that G′ ⊆ N(i)∩ C . Hence
|NM (i)∩C |
|NM (i)|

≥ |G′ |
|NM (i)|

≥ d. As i was arbitrary from C , C is indeed a

cluster of density d in (A , N).

Lemma 1. For any n, the following properties hold if m≥ k:

1. Increased prediction does not slow down dynamics: Bk
n ⊆ Bm

n .

2. Knowledge is inflating in prediction level: KbBk
n ⊆ KbBm

n

Proof. LetM be an epistemic threshold model with actual state

M = (A , N , B,θ).

1.: We show by induction that if b ∈ Bk
n , then b ∈ Bk+1

n . Base:

Assume b ∈ B0
n. Then |B0

n−1/b| ≥ θ . As N(b) ∩ B0
n−1 ⊆ KaB0

n,

it follows that |KbB0
n/b| ≥ θ . Hence b ∈ B1

n. Step: Assume

as induction hypothesis that for all l < k, B l
n ⊆ B l+1

n . Assume

that b ∈ Bk
n . Then |KbBk−1

n /b| ≥ θ . By the induction hypoth-

esis, Bk−1
n ⊆ Bk

n , so KbBk−1
n ⊆ KbBk

n . Hence |KbBk
n/b| ≥ θ , so

b ∈ Bk+1
n .

2.: Assume j ∈ KbBk
n in M . Then by definition, for all M ′ ∼b

M , j ∈ B′ k
n∩N(b). So j ∈ B′ k

n. By 1. of this lemma, B′ k
n ⊆ B′ m

n .

As this holds for allM ′ ∼b M , by definition j ∈ KbBm
n inM .

Theorem 3. All prediction dynamics are fixed point equivalent to

blind adoption dynamics. Specifically, for all k, if Bk
n = Bk

n+1 and

B0
m = B0

m+1, then Bk
n = B0

m.

Proof. Let M be an epistemic threshold model with actual

world M = (A , N , B,θ). The inclusion B0
m ⊆ Bk

n follows from

Lemma 1, point 1. To show that Bk
n ⊆ B0

m, we decompose Bk
n and

show that if b ∈ Bk
n , then b ∈ B0

l for some l. As B0 is inflating,

this shows that b will be in the fixed point, B0
m.

Assume that b ∈ Bk
n with n the fixed point of Bk atM . We

distinguish two cases for why b would belong to Bk
n:

1. b is a new member of Bk, i.e. b 6∈ Bk
n−1.

2. b is an old member of Bk, i.e. b ∈ Bk
n−1.

11
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Case 1: We argue that since b entered Bk
n , he would also have

entered B0
l , for some l. Assume b ∈ Bk

n . Then |KbBk−1
n /b| ≥ θ .

There are two sub-cases: either k− 1= 0 or k− 1> 0.

k − 1 = 0: If k − 1 = 0, then Bk−1
n = B0

n, so KbBk−1
n ⊆ B0

n.

Hence |B0
n/b| ≥ |KbBk−1

n /b| ≥ θ . Hence b ∈ B0
n.

k − 1 > 0: We argue that this case effectively reduces to

the former. If k − 1 > 0, then |KbBk−1
n /b| ≥ θ , for which rea-

son KbBk−1
n must be non-empty. Let c ∈ KbBk−1

n . Then c ∈ Bk−1
n .

Hence |Kc B
k−2
n /c| ≥ θ . In this case, the two sub-cases reappear:

either k− 2 = 0 or k− 2 > 0. If the former, then c ∈ B0
n by the

argument for k − 1 = 0. As c was arbitrary among the neigh-

bours of b that caused b’s membership in Bk
n , it follows that

b ∈ B0
n+1. If k− 2 > 0, the present argument may be reapplied,

reducing the case to k−3. Continuing this reduction will lead to

k− k = 0. Then apply the argument for k−1= 0 and conclude

that b ∈ B0
l for some l.

Case 2: There are again two sub-cases: either n − 1 = 0 or

n− 1 > 0. for the latter, find the least l such that b ∈ Bk
l , but

b 6∈ Bk
l+1 and apply the argument for case 1. For the former, if

n− 1= 0, then b must have been a seed, i.e. b ∈ B0
0 .

Theorem 4. Prediction is limited by sight. If ∼i is defined using

N k(i), then if m≥ k− 1, then Bm
n = Bk−1

n , for all n.

Proof. The case for Bk−1
n ⊆ Bm

n follows from Lemma 1, point 1.

For the inclusion Bm
n ⊆ Bk−1

n , then this follows if we can show

that KbBk−1
n = KbBm

n for arbitrary b.7 From Lemma 1, point 2,

we have that KbBk−1
n ⊆ KbBm

n . We now argue that given ∼b is

limited by N k(b), then KbBk−1
n is the largest set of agents b may

know anything about.

Assume j is reachable from b in at least k steps, so that j is

one the boarder of N k(b). Then j is in KbBk−1
n iff

1. j is already in Bn−1, or

2. j has so few neighbours outside N k(b) that if

N k(b)\N( j) ⊆ Bn−1, then j ∈ Bn. I.e., j would enter Bn

by blind adoption alone.

Each point clearly implies that j ∈ KbBk−1
n . To see that no other

options exist, notice that it makes no difference what assump-

tion b makes about j’s prediction level: If j would not adopt by

blind adoption, then b has insufficient information about N k( j)

to determine j’s future actions. Hence j 6∈ KbBk−1
n .

A similar argument can be made for j′, reachable from b in

at least k− 2 steps: it makes no difference what assumptions b

makes about j′’s prediction level, as long as b assumes j′ is of

level 1 or higher. For j′′ reachable in at least k−3 steps, assump-

tions above level 2 makes no difference, etc., until we reach the

conclusion that no assumption above level k − 1 makes a dif-

ference in predicting the behaviour of agents in N k(b). Hence,

if j ∈ KbBm
n , then this is caused by information available to b

already at prediction level k− 1. Hence j ∈ KbBk−1
n .

7 Because if KbBk−1
n = KbBm

n , then
|N(b)∩Kb Bk−1

n |
|N(b)|

= |N(b)∩Kb Bm
n |

|N(b)|
. Hence if the latter is above θ , so is the former. Hence membership

of Bm
n implies membership of Bk−1

n .
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