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Abstract. We take a logical approach to threshold models, used to study the diffusion

of opinions, new technologies, infections, or behaviors in social networks. Threshold mod-

els consist of a network graph of agents connected by a social relationship and a threshold

value which regulates the diffusion process. Agents adopt a new behavior/product/opinion

when the proportion of their neighbors who have already adopted it meets the threshold.

Under this diffusion policy, threshold models develop dynamically towards a guaranteed

fixed point. We construct a minimal dynamic propositional logic to describe the threshold

dynamics and show that the logic is sound and complete. We then extend this framework

with an epistemic dimension and investigate how information about more distant neigh-

bors’ behavior allows agents to anticipate changes in behavior of their closer neighbors.

Overall, our logical formalism captures the interplay between the epistemic and social

dimensions in social networks.

Keywords: social network theory, threshold models, diffusion in networks, social epistemol-

ogy, formal epistemology, dynamic epistemic logic, opinion dynamics, opinion dynamics

under uncertainty

1. Introduction

An individual’s actions or opinions are often influenced by the actions of
people around her. The way a new product or fashion gets adopted by a
population depends on how agents are influenced by others, which in turn
depends both on the way the population is structured and on how influence-
able agents are.

This paper focuses on one particular account of social influence, threshold-
limited influence, as presented in e.g. [15, 37]. Threshold-limited influence
relies on an imitation or conformity pressure effect: agents adopt a behav-
ior/product/opinion/fashion whenever a critical fraction of their neighbors
in the network have adopted it already. In this sense, diffusion in social
networks can be seen as a study of local influence, triggering agents to
adopt a similar behavior/opinion/product as their neighbors [19, 38]. So-
called threshold models, having gained early, wide-spread attention through
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[18, 33, 34], are used precisely to represent the dynamics of diffusion under
threshold-limited influence. This type of models has received a lot of atten-
tion in the recent literature [1, 15, 17, 20, 23, 25, 26, 36], also within the
logic community [8, 9, 12, 10, 11, 24, 28, 29, 32, 35, 39].

This paper has two goals. Our first goal is to propose logics for rea-
soning about threshold models and their dynamics. Our second goal is to
investigate how the agents’ knowledge affects such dynamics. After recalling
standard threshold models in Subsection 2.1, a dynamic logic for modeling
threshold influence within social networks is introduced in Subsection 2.3.
While conceptually in line with [10, 11, 24, 28, 32, 35, 39] in using logic to
model social influence effects within network structures, our new framework
distinguishes itself by avoiding the use of static modalities or hybrid logic
tools. In this sense, the logical setting we introduce is “minimal”: propo-
sitional logic is used to specify both the network structure and the agents
behavior, and a single dynamic modality is used to represent the threshold-
limited influence. Moreover, while [10, 11, 24, 35, 39] focus on the limit
thresholds of 100% (all neighbors) and non-0% (at least one neighbor), we
allow here for any (uniform) adoption threshold, as is standard within the
literature on threshold models. Subsection 2.4 shows how the logic captures
the relationship between clusters and diffusion of a behavior to the whole
network.

In Section 3 we introduce epistemic threshold models. These mod-
els come equipped with a specific knowledge-dependent update procedure,
called “informed adoption”, where agents must possess sufficient information
about their surroundings before they adopt the behavior. This is a concep-
tual jump from the initial minimal modeling of influence from Section 2
to a more sophisticated (information dependent) diffusion policy: Agents
change from adopting the behavior whenever sufficiently many neighbors
have done so to adopting the behavior only if they know that sufficiently
many neighbors have done so. We then relate these two diffusion policies by
showing under which epistemic conditions their diffusion dynamics is step-
wise identical. The section is concluded by extending the logic to a sound
and complete dynamic epistemic logic for the epistemic threshold models
and the informed update procedure.

We further notice an interesting feature of the informed update proce-
dure. Even though the “informed update” requires that agents have enough
information to be influenced, the update does not require them to use all
their available information when making their choices. Hence, if we consider
threshold models as representing reflecting agents who are driven by a co-
ordination goal, the new knowledge dependent update procedure makes our
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agents choose an action even when they know they could do better. To over-
come this shortcoming, in Section 4, we introduce a third adoption policy,
a “prediction update”, where agents utilize all the available information to
predict the future behavior of other agents in the network, and act upon their
predictions. In other words, they anticipate, and it is common knowledge
that they do. We show that the agents’ reasoning about other predicting
agents always reaches a fixed point and that making adoption dependent on
this very fixed point captures the best response of agents trying to coordi-
nate to the best of their knowledge. We give an example illustrating how
knowledge about the network and about the behavior of other agents can
be interpreted as an “accelerator” of diffusion dynamics, under this last pre-
diction policy: the fixed point of the diffusion process under the prediction
update is the same as under the informed update, but it can be reached
faster if agents know more about the network around them.

Finally, Section 5 discusses the in-built assumptions of the introduced
updates as well as several alternative diffusion policies and Section 6 gives
some directions for further research.

2. Threshold Models and their Dynamic Logic

This section introduces the notion of threshold models and designs a logic
to capture their dynamics.

2.1. Threshold Models for Social Influence

A social network may be seen as a graph, where nodes represent agents
and edges represent a binary social relationship among them. This paper
restricts itself to finite and undirected graphs without self-loops, that is,
to symmetric and irreflexive social relationships, e.g. being neighbors or
friends.∗ Moreover, we impose that each agent has at least one neighbor
in the network, as isolated agents are irrelevant to a discussion of social
influence:

Definition 2.1 (Network). A network is a pair (A, N) where A is a non-
empty finite set of agents and the function N : A → P(A) assigns a set
N(a) to each a ∈ A, such that
∗While the case of networks without symmetry is also interesting, for instance to model

influence on “followers”, most of the existing literature on threshold models mentioned in
the introduction concerns the symmetric and irreflexive case only. This is why these
restrictions are imposed here.
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• a /∈ N(a) (Irreflexivity)

• b ∈ N(a) if and only if a ∈ N(b) (Symmetry)

• N(a) 6= ∅ (Seriality)

The simplest type of threshold model consists of a network together
with the extension of a unique behavior (or opinion, fashion, or product)
distributed over the agents, and a fixed uniform adoption threshold. A
threshold model thus represents the current spread of the behavior through-
out the network, while containing the adoption threshold which prescribes
how this spread will evolve.

Remark 2.2. Throughout the text, we identify the behavior with its exten-
sion, i.e., with a designated subset B of A of agents that have adopted the
behavior. Moreover, the verb ”adopt” is used with ”the behavior” as im-
plicit object: When writing ”Agent a has adopted”, we imply that a has
adopted the unique behavior in question.

Definition 2.3 (Threshold Model). A threshold model is a tuple
M = (A, N,B, θ) where (A, N) is a network, B ⊆ A is a behavior and
θ ∈ [0, 1] is a uniform adoption threshold.

It is assumed throughout this paper that both the network structure
and the adoption threshold stay constant under updates. Therefore, the
spread of the behavior (i.e., the extension of B) at ensuing time steps may
be calculated using the fixed threshold and network structure as follows:

Definition 2.4 (Threshold Model Update). The update of threshold model
M = (A, N,B, θ) is the threshold model M′ = (A, N,B′, θ), where B′ is
given by

B′ = B ∪
{
a ∈ A :

|N(a) ∩B|
|N(a)|

≥ θ
}
. (1)

This definition captures the idea that the new set of agents B′ who
adopted the behavior (in the new updated model M′) does include the set
of agents B who had already adopted the behavior before and it includes
those agents who have enough neighbors (given by the number θ) that have
adopted already. This definition is set in line with the standard approach
on adoption rules in the literature [15].

By repeatedly applying this update rule in an initial threshold model,
we obtain a unique sequence of threshold models, which we call a diffusion
sequence:
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Definition 2.5 (Diffusion Sequence). Let M = (A, N,B, θ) be a thresh-
old model. The diffusion sequence SM is the sequence of threshold models
M0,M1,M2, ... such that, for any n ∈ N, Mn = (A, N,Bn, θ) where Bn is
given by:

B0 = B and Bn+1 = B′n.

Note that any such diffusion process reaches a fixed point, and that the
number of agents in the initial model gives an upper bound on the number
of updates that can be performed before reaching the fixed point:

Proposition 2.1. Let SM be a diffusion sequence. For some n ∈ N < |A|, we
reach a fixed point Mn =Mn+1 in the sequence SM.

Proof. The fact that there is a n ∈ N such that Mn = Mn+1 follows
immediately from the fact that A is finite and Bn ⊆ Bn+1 for all n ∈ N.
The fact that n < |A| is given by considering the slowest possible diffusion
scenario, i.e. where |B0| = 1 and only one agent adopts per round, i.e. for
each m < n ∈ N, |Bm| = m+ 1. In this case

∣∣B|A|−1∣∣ = |A|. a

2.2. Interpretation

Threshold models and their dynamics may be interpreted in two ways. One
interpretation assumes that agents are mere automata and that their be-
havior is forced upon them by their environment. This interpretation suits
the models that are used in e.g. epidemiology, where agents are undeliber-
atively infected through viral contagion. Under this interpretation, the up-
date procedure corresponds to that of a deterministic Susceptible-Infected
(SI) model. It is closely related to a deterministic Susceptible-Infected-
Susceptible (SIS) model, which also allows unadoption of the behavior in
question. An SIS model diffusion policy given by Eq. 2, where the right
term in the union captures a conservative tie-breaking rule:

B′ =

{
a :
|N(a) ∩B|
|N(a)|

> θ

}
∪
{
a :
|N(a) ∩B|
|N(a)|

= θ and a ∈ B
}
. (2)

Since Eq. 2 does not cause B to inflate, this alternative rule allows the
possibility of loops in behavior, i.e. where B = B′′ 6= B′. Thereby repeated
updates according to Eq. 2 do not necessarily reach a fixpoint.

Dynamics as Induced by Game Play. Alternatively, agents may be
interpreted as rational beings aiming towards coordination with their neigh-
bors. In fact, Equations 1 and 2 correspond to the best response dynamics
of agents playing an instance of a coordination game
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B ¬B
B x, x 0, 0
¬B 0, 0 y, y

with each of their neighbors at each timestep, under the constraint that at
each timestep, each agent may pick only one strategy to play simultaneously
in all instances. The utility of a play round for an agent a is the sum
of utilities of the individual coordination games played by a in that round.
With B the set of agents currently playing action B, B is thus a best response
for agent a iff

x · |N(a)∩B|
|N(a)| ≥ y ·

|N(a)∩¬B|
|N(a)| ⇔

|N(a)∩B|
|N(a)| ≥

y
x+y .

Defining θ as y
x+y , we specifically obtain that Eq. 2 captures such plays’

best response dynamics with conservative tie-breaking [26]: B′ as given by
Eq. 2 is exactly the set of agents for whom B is a best response. Hence
the diffusion dynamics arising from updating a network using best response
analysis is step-wise equivalent with those given by Eq. 2. Moreover, for
any θ ∈ [0, 1], there exists coordination game payoffs that yield best response
dynamics equivalent to those of Eq. 2 instantiated with the given θ.

Equation 1, which we stick to as the foundation for the main diffusion
policies of this paper, captures the same game-theoretic dynamics, but with
two variations: First, the tie-breaking rule in Eq. 1 favors adopting the be-
havior over not doing so, in contrast with Eq. 2’s conservative tie-breaking.†

Second, with discriminating tie-breaking, but also the added assumption
that the initial agents playing B will never stop doing so, either do to irra-
tionality or because they sufficiently mutually support one another in that
choice, cf. the Cluster Theorem of Sec. 2.4. See [15, 26] for game-theoretic
details and [28] for action model-based logical treatments.

This paper focuses on the dynamics given by Eq. 1, for which we find
the game-theoretic interpretation natural as a basis for rationality consider-
ations.

Model Variations. There are several variations to threshold models as
given by Def. 2.3 that one may wish to consider, given the application in
mind. Numerous such exist in the literature, including infinite networks [26],
networks with non-inflating behavior adoption [26], agent-specific thresholds
[20], weighted links [20] and multiple behaviors [1]. For simplicity, we stick to
†Note that with a finite set of agents, the adoption threshold/coordination game payoffs

could always be chosen as to eliminate any possibility that tie-breaking need be used.
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the finite threshold models defined. This also holds throughout the epistemic
extensions.

For the results presented, of these variations, only assuming the network
infinite would give rise to revisions, cf. the comments concerning finiteness
and reaching fixed points when applying predictive update polices in Sec.
4. In particular, both weighted links and agent-specific thresholds may be
incorporated from the game-theoretic underpinnings of Eq. 1 by setting
agents to play game with non-symmetric payoffs, possibly varying across
neighbors. This will be relevant when modeling diffusion in networks where
the relation is non-symmetric. Then a lower – or zero – weighting may be
chosen for given interactions, thus obtaining non-symmetry. Though details
should be revised, this variation would not cause significant difficulties for
the presented.

2.3. The Logic of Threshold-Limited Influence

This section introduces a minimal logic to express the standard notion of
threshold-limited influence introduced in the section above. To describe
the situation of a social network at a given moment, the static language
needs to capture two things: who is related to whom and who is displaying
the contagious behavior B. In this paper, both features will be encoded
using propositional variables.‡ To describe the change of situation of a
social network, the language includes a dynamic modality. This modality
represents how agents adopt the behavior of their neighbors, whenever the
given adoption threshold is reached, i.e., whenever enough neighbors have
adopted.

Definition 2.6 (Languages L[] and L). Let A be a finite set and let atoms
be given by Φ = {Nab : a, b ∈ A} ∪ {βa : a ∈ A}. The language L[] is then
given by:

ϕ := Nab | βa | ¬ϕ | ϕ ∧ ϕ | [adopt]ϕ

The formulas of L are those of L[] that do not involve the [adopt]-modality.

Disjunction and material implication are defined in the standard way.
L[] is an extension of propositional logic with a unary dynamic modality,
denoted [adopt]. The language is interpreted over threshold models, using
the behavior set and the social network to determine the extension of the
‡Informationally, both features could be broken down using more fine-grained modelling

tools, using e.g. hybrid [39] or term-modal logical [16, 27] approaches. For simplicity, we
refrain from doing so.
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atomic formulas. The [adopt] modality is interpreted as is standard in dy-
namic epistemic logic§ [4, 3, 6, 14]: Intuitively, we evaluate [adopt]ϕ as true
in a given model if and only if ϕ is true in the model after a given change
occurs. Here, this change is that all agents simultaneously update their
behavior according to the threshold update of Definition 2.4.

Definition 2.7 (Truth Clauses for L[]). Given a model M = (A, N,B, θ),
Nab, βa ∈ Φ, and ϕ,ψ ∈ L[]:

M � βa iff a ∈ B

M � Nab iff b ∈ N(a)

M � ¬ϕ iff M 2 ϕ

M � ϕ ∧ ψ iff M � ϕ and M � ψ

M � [adopt]ϕ iff M′ � ϕ, where M′ is the updated
threshold model (Definition 2.4).

Let us also introduce some abbreviations:

Abbreviation. We introduce the formula [adopt]nϕ as an abbreviation
which is defined recursively:

[adopt]0ϕ := ϕ

[adopt]n+1ϕ := [adopt][adopt]nϕ

Abbreviation. We introduce the following abbreviation:

βN(a)≥θ :=
∨

{G⊆N⊆A: |G||N|≥θ}

(
∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G

βb)

This formula βN(a) ≥ θ expresses that the proportion of agent a’s neighbors
who have adopted is equal to or above the threshold θ.

The following proposition captures within our language the fact (as noted
in Prop. 2.1) that all diffusion sequences stabilize after some finite number
of updates, illustrating how our language allows for capturing features of
threshold model dynamics, such as stability and stabilization of the diffusion
sequence:
§The dynamic operators in Dynamic Epistemic Logic are taken to be model transform-

ers, they transform a given model into a new model.
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Proposition 2.2. Let M = (A, N,B, θ) be a threshold model. There exists
n ∈ N < |A| such that, for any ϕ ∈ L[]:

[adopt]nϕ↔ [adopt]n+1ϕ

Proof. As noted in the proof of Prop. 2.1, in the diffusion sequence SM,
for some n ∈ N < |A|, Mn =Mn+1. Hence Mn and Mn+1 are guaranteed
to satisfy the same formulas, whereby M |= [adopt]nϕ↔ [adopt]n+1ϕ. a

Axiomatization. We obtain an axiomatization of the logic for thresh-
old models and their update dynamics by using the standard method of
reduction rules from dynamic epistemic logic [4, 3, 6, 14].

Definition 2.8 (The Logic of Threshold-Limited Influence, Lθ). The logic
Lθ is comprised of any axiomatization of the propositional calculus and of
the axioms and derivation rules of Table 1, for a given threshold θ ∈ [0, 1].

The static logic consists of the axioms of propositional logic, the net-
work axioms of Table 1 and the rule of Modus Ponens. These capture the
constraints imposed on the networks. In the dynamic part of the logic,
we define rules that reduce formulas that contain the [adopt] modality to
formulas without it. This is possible as the update procedure is determin-
istic: all the information required to determine the update threshold model
is present in the current model. Hence the next state is pre-encoded in the
present state.

As the [adopt] modality only affects the extension of B, the reduction
axioms are trivial in all cases except those involving βa. The correspond-
ing reduction axiom, Red.Ax.β, relies on the mentioned pre-encoding. The
axiom Red.Ax.β states that a has adopted B after the update just in case
1) she had already adopted it before the update or 2) the proportion of her
neighbors who had already adopted it before the update was above thresh-
old θ.

Definition 2.9 (Cθ). Let the threshold θ ∈ [0, 1] be given. The class of
threshold models Cθ contains all and only models with the same threshold θ.

For any given threshold θ ∈ [0, 1], the minimal logic Lθ is sound and complete
with respect to the corresponding class of models Cθ: ¶
¶The proof system and model class are further parametrized by the set of agents A

used to define the corresponding language.
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry∨
b∈A

Nab Seriality

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔ ¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ ψ ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨ βN(a) ≥ θ Red.Ax.β

Inference Rules

From ϕ and ϕ→ ψ, infer ψ Modus Ponens

From ϕ, infer [adopt]ϕ Nec[adopt]

From ϕ and ψ ↔ χ, infer ϕ[ψ/χ] Repl. of Equiv.

Table 1. Hilbert-style proof system Lθ. In Replacement of Equivalents, ϕ[ψ/χ] is the
formula resulting from replacing, in ϕ, every occurence of the subformula ψ with the
formula χ.

Theorem 2.1 (Completeness). Let θ ∈ [0, 1]. For any ϕ ∈ L,

|=Cθ ϕ iff `Lθ ϕ

Proof. Soundness: Let M = (A, N,B, θ) be an arbitrary threshold model
with a, b ∈ A. Then M satisfies Irreflexivity (Symmetry/seriality) directly
by the semantics and the assumption of irreflexivity (symmetry/seriality)
of the network. M |=[adopt]Nab ↔ Nab as the adoption operation never
alters the network. Soundness of Red.Ax.¬ and Red.Ax.∧ may be shown
straightforwardly using induction on the length of formulas.

To see that M satisfies Red.Ax.β, let M′ be the adoption update of
M. Then M |= [adopt]βa iff M′ |= βa iff a ∈ B′ = B ∪

{
b∈A:N(b)∩B

N(b)
≥θ

}
iff

M |= βa or a ∈
{
b∈A:N(b)∩B

N(b)
≥θ

}
. A syntactic decoding following Definition

2.3 of the large, right-hand disjunct of Red.Ax.β (called βN(a)≥θ) shows that
it is satisfied iff a ∈

{
b∈A:N(b)∩B

N(b)
≥θ

}
: The outer disjunction requires/ensures

the existence of two sets of agents, G and N , such that G ⊆ N and |G|
|N | ≥ θ.
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The inner conjunction in Definition 2.3 is satisfied iff N = N(a) and G ⊆ B.

Hence ϕ is satisfied iff ∃G ⊆ N(a) ∩ B : |G|
|N(a)| ≥ θ iff |N(a)∩B|

|N(a)| ≥ θ iff

a ∈
{
b∈A:N(b)∩B

N(b)
≥θ

}
. Hence M |= [adopt]βa iff M |= βa or M |= βN(a)≥θ.

Completeness: The proof goes via translation of the dynamic language into
the static part of the language, in the usual way (see e.g. [14, Ch. 7]). a

2.4. Clusters and Cascades

An agent adopting a new behavior may influence some of her neighbors to
adopt it at the next moment, which in turn may cause further agents to adopt
it, and so on. Such a chain reaction is termed a cascade in the literature (see
e.g. [15, Ch. 19]), and a cascade is said to be complete when it results into
a state where all agents have adopted the new behavior. Because the above
given updates of threshold models always reach a fixed point, any cascade
will eventually stop. However, a cascade may stop before all agents have
adopted, i.e. without being complete. The following recalls a known result
about how cascading effects are constrained by the network structure and
shows how the suitable constraint may be captured by the minimal logic Lθ.

First of all, our language can express that a diffusion sequence will reach
a complete cascade, given the upper bound on the number of updates before
stabilization of the diffusion process noted in Proposition 2.1:

Definition 2.10. The sentence abbreviated by ‘cascade’ expresses that all
agents will have adopted eventually:

cascade := [adopt]|A|−1
∧
a∈A

βa

Some parts of a network structure may be more “dense” than others.
Strongly connected groups of agents are more resilient to external influence.
E.g., a tightly knit group may be hard to convert to a particular opinion if
all its members support one another in disagreeing with the opinion. Tightly
connected components of a network might therefore block the diffusion of
a behavior when it stems from outside this component. Briefly put, dense
components of a network may prevent complete cascades and the denser a
group, the better it resists change induced from the outside. The required
precise notion of a “dense” group is that of a d-cohesive set [26], also referred
to as a cluster of density d [15]. A cluster of density d is a set of agents
such that for each agent in the set, the proportion of her neighbors which
are also in the group is at least d.
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Figure 1. A social network with a cluster of density 2
3
.

Definition 2.11 (Cluster of density d). Given a network (A, N), a cluster
of density d is any group C ⊆ A such that for all a ∈ C,

|N(a) ∩ C|
|N(a)|

≥ d.

Notice that any network will contain at least one cluster of density 1, namely
the group A, and that each singleton {a} ⊆ A is a cluster of density 0 (by
irreflexivity).

Example: Clusters. Let M be the model illustrated in Figure 1, with
B = {d}. In this model, C = {a, b, c} is a cluster of density 2

3 , in which no
member belongs to B.

The language L can express the existence of a cluster: if C is a cluster
of density d then for each a in C, there is a big enough subset of C which
are a’s neighbors.

Proposition 2.3. The group C is a cluster of density d in (A, N) iff M =
(A, N,B, θ) satisfies

∧
a∈C

∨
{
G⊆N⊆A: |G∩C||N| ≥d

}
(∧
b∈N

Nab ∧
∧
b/∈N

¬Nab

)
(3)

Proof. Left to right: Let M = (A, N,B, θ) and assume C is a cluster of

density d in (A, N). Then by definition, for all a ∈ C, |N(a)∩C|
|N(a)| ≥ d. As M

is based on (A, N), {b :M |=Nab} = N(a) for all a ∈ A. Let a be given and

pick N = N(a) and G = N(a) ∩ C. Then |G|
|N | ≥ d. Given the choice of N ,

M |=
∧
b∈N Nab ∧

∧
b/∈N ¬Nab. So M satisfies (3).

Right to left: Assume that M satisfies (3) for some C ⊆ A and some
d ∈ [0, 1]. Then for each a ∈ C, there is are sets G and N with G ⊆ N and
|G∩C|
|N | ≥ d, such that N = {M |= Nab} = N(a). Hence |G∩C||N(a)| = |G∩C|

|N | ≥ d.

As G∩C ⊆ N = N(a), |N(a)∩C|
|N(a)| ≥ d. As a was arbitrary from C, C is indeed

a cluster of density d in (A, N). a
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Given Proposition 2.3, it is easy to see that the sentence below charac-
terizes the existence of a cluster of density d among agents who have not
adopted (abbreviated ∃C≥d¬β):

∃C≥d¬β :=
∨
C⊆A

∧
a∈C

∨
{
G⊆N⊆A: |G∩C||N| ≥d

}
(∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G
¬βb

)

Note that we can express in the same way that there is a cluster of density
greater than d, by replacing ≥ by the strict > in the formula (abbreviated
∃C>d¬β).

Example: Clusters, continued. The model illustrated in Figure 1 con-
tains a cluster C = {a, b, c} of density 2

3 , such that no agent in C has adopted.
Hence, the model should satisfy ∃C 2

3
¬β :

∨
C⊆A

∧
a∈C

∨
{
G⊆N⊆A: |G∩C||N| ≥

2
3

}
(∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G
¬βb

)
. (4)

To verify this, assume C is a group that satisfies the outmost disjunction.
Then for each a ∈ C there is a G and N such that |G∩C||N | ≥

2
3 for which M

satisfies ∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G
¬βb. (5)

To see thatM satisfies (5), regard first agent c, for whom the appropriate N
is {a, b, d}. As |N | = 3, we must identify a group G ⊆ C with |G| ≥ 2 such
that for all b ∈ G, M |=Ncb. Such a G exists, being {a, b}. Finally, indeed
M |=¬βa ∧ ¬βb, and hence the conjunct for c is satisfied. Similar reasoning
shows that the conjuncts for a and b also hold. This gives us (4).

The Cluster Theorem. The following theorem from [26], [15, Ch.19.3]
characterizes the possibility of a complete adoption cascade in a network:

Given a threshold model M with threshold θ 6= 0 and a set B ⊂ A
of agents who have adopted, all agents will eventually adopt if and
only if there does not exist a cluster of density greater than 1− θ in
A\B.
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As both the complete cascade and the existence of the relevant clusters are
expressible in L[], the cluster theorem can also be encoded in our setting, in
the following way:

Let M = (A, N,B, θ) with θ 6= 0. Then

M |= cascade↔ ¬∃C>1−θ¬β.

2.5. Logics for Generalizations of Threshold Models

So far, we have considered the “simplest” possible network structures: the
networks are finite, symmetric, irreflexive and serial. The constraints of
symmetry and irreflexivity could easily be relaxed in the initial definition
of threshold models (Def. 2.3) to generalize the logics to different types of
social relationships (for instance a hierarchical network).

For simplicity, we work with uniform thresholds. Obtaining logics for
settings without this uniformity constraint is unproblematic: 1) define θ
not as a constant but as a function assigning a particular threshold to each
agent; i.e., set θ : A → [0, 1] in the definition of threshold models (Def. 2.3);
2) replace θ by θ(a) in the definition of the update (Def. 2.4) and in the
reduction axiom Red.Ax.β (in Table 1). This will generate a logic for each
such function θ, that is, for each distribution of thresholds among agents.

The logical setting may also be generalized to capture the spread of
several behaviors and their interaction. This amounts to: 1) modify the
definition of threshold models (Def. 2.3) to let B be a finite set of behav-
iors (B = {B1, B2, ...Bn}) and define θ : A × B → [0, 1]; 2) Relativize the
definition of the update to each behavior Bi; 3) extend our set of atomic
propositions: Φ = {Nab : a, b ∈ A} ∪ {βia : a ∈ A, i ∈ 1, ...n}; 4) relativize
the semantic clause in the obvious way: M � βia iff a ∈ Bi, and replace
the reduction axiom Red.Ax.β by Red.Ax.βi accordingly. The “signature”
of the resulting logic will then be given by [θ,A,B]. Such a logic allows
reasoning about the diffusion of a fixed number of behaviors, given a specific
distribution of thresholds for each behavior to each agent, for any particular
network structure.

Furthermore, we consider the proportion of neighbors who have adopted
as the only relevant factor for decision making. This makes every neighbor
as influential as any other. To generalize, weighted links representing dif-
ferent “degrees of influence” could be used instead. The condition for being
influenced into adopting would become: the weighted sum of my neighbors
which have adopted is at least θ. Alternatively, we could fix an ordering
of neighbors of each agent a with b ≥a c stating that agent b influences
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Figure 2. A situation of uncertainty. Agent a cannot tell whether world w or world v
is the actual one, as indicated by the dashed line (when representing indistinguishability
relations we omit reflexive and transitive links). Hence, a does not know whether c has
adopted or not. Assume that the threshold is θ > 1/2 and that v is the actual world. Then,
according to the ‘threshold model update’, a should adopt – but a does not know that!

agent a at least as much as agent c does. Based on such an ordering, one
possible update policy would be that a adopts when a given proportion of
≥a-maximal agents have adopted.

Additional alternative policies will be discussed in Section 5. These will
also involve epistemic considerations, the topic to which we turn next.

3. Epistemic Threshold Models and their Dynamic Logic

By the definition of the above given update on threshold models, agents react
to their environment : they are always influenced by the actual behavior of
their direct neighbors. In many situations, this “nomothetic” update style
seems to pose unrealistic requirements. The update requires that agents act
in accordance with the facts of others’ behavior, even in the face of uncer-
tainty. Hence, the above threshold model update may require of agents that
they act in accordance with information that they do not actually possess.
For an example, see Figure 2.

To accommodate this shortcoming, we extend the standard threshold
models with an epistemic dimension and define a refined adoption policy
where agents’ behavior change depends on their knowledge of others’ behav-
ior. We moreover define a logical system suitable to reason about epistemic
threshold models and their dynamics.

To add an epistemic dimension to threshold models, we add for each
agent a subjective epistemic indistinguishability relation, as illustrated in
Figure 2. Or equivalently, following [2], each agent is given an “information
partition” over a given set of possible worlds. Each information cell in this
partition indicates the uncertainty of the agent: i.e. the things she cannot
tell apart. This modeling of uncertainty is commonplace in logic, economics
and computer science.
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3.1. Epistemic Threshold Models

The most general version of threshold models with an epistemic dimension
that we will work with in this paper is the following:

Definition 3.1 (Epistemic Threshold Model (ETM)). An epistemic thresh-
old model (ETM) is a tuple M = (W,A, N,B, θ, {∼a}a∈A) where

• W is a finite, non-empty set of possible worlds (or states),

• A is a finite non-empty set of agents,

• ∼a⊆ W ×W is an equivalence relation, for each agent a ∈ A,

• N : W → (A → P(A)) assigns a neighborhood N(w)(a) to each a ∈ A
in each w ∈ W, such that:

– a /∈ N(w)(a) (Irreflexivity)

– b ∈ N(w)(a)⇔ a ∈ N(w)(b) (Symmetry)

– N(w)(a) 6= ∅ (Seriality)

• B : W → P(A) assigns to each w ∈ W a set B(w) of agents who have
adopted.

• θ ∈ [0, 1] is a uniform adoption threshold.

To reason about the impact of knowledge on diffusion in network situ-
ations, we want to impose limiting assumptions regarding the agents’ un-
certainty. It is for example natural to assume that agents know who their
direct neighbors are, though cases exist where it is natural that agents know
more about the network. Agents may know who the neighbors of neighbors
are, or maybe the whole network is even common knowledge. Likewise, the
uncertainty about agents’ behavior might be subject to various constraints:
agents may know the behavior of their neighbors, of their neighbors’ neigh-
bors, of everybody, etc. ‖

One way to impose restrictions on uncertainty is by giving agents an
ego-centric “sphere of sight”, corresponding to how far they can “see” in the
network, assuming that if they can see further, they can see closer. We will
say that an agent has sight n when she can “see” at least n agents away, i.e.,
when she knows at least both the network structure and the behavior of all
agents within distance n. To provide a formal definition, we first fix what is
meant by “distance n”:
‖Uncertainty concerning the adoption threshold could also be considered, as one re-

viewer points out. Mathematically, this would be straightforward, and if our remaining
assumption below are kept in effect, nothing hinders this extension. We omit it in the
name of simplicity, cf. Sec. 2.2
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Definition 3.2 (n-reachable, n-distant). LetM = (W,A, N,B, θ, {∼a}a∈A)
and let n ∈ N. Define Nn :W → A→ P(A) as follows, for any w ∈ W and
any a, b, c ∈ A:

• N0(w)(a) = {a}

• Nn+1(w)(a) = Nn(w)(a) ∪ {b ∈ A : ∃c ∈ Nn(w)(a) and b ∈ N(w)(c)}

If b ∈ Nn(w)(a), then b belongs to the set of agents that a has within her
n sight at world w. Morever, if b ∈ Nn(w)(a) we say that b is n-reachable
from a in w.

Definition 3.3 (Sight n Model∗∗). An ETMM = (W,A, N,B, θ, {∼a}a∈A)
of sight n is an epistemic threshold model such that, for n ∈ N and for any
a, b ∈ A and w, v ∈ W :

• If w ∼a v and b ∈ Nn(w)(a), then b ∈ B(w) iff b ∈ B(v) (agents know
the behavior of others at least up to distance n).

• If w ∼a v and b ∈ Nn−1(w)(a), then N(w)(b) = N(v)(b) (agents know
the network at least up to distance n)

In other words: in an ETM of sight n, the structure of the network and
the others’ behavior are known at least up to distance n, and this is common
knowledge. Note, though, that the n sight is common knowledge does not
imply that all agents have equal sight: Some may see further.

3.2. Knowledge-Dependent Diffusion

To remedy the problem of agents acting on information they may not possess,
we introduce a revised adoption policy. It captures the intuitive idea that
an agent should only be influenced by what she knows about other agents
around her. This amounts to a knowledge-dependent adoption policy: agents
adopt whenever they know that enough of their neighbors have adopted
already. We call this update policy informed update:

Definition 3.4 (Informed Update). Let M = (W,A, N,B, θ, {∼a}a∈A) be
an ETM with sight n. The (n sight) informed adoption update of M pro-
duces results in an ETMMi = (W,A, N,Bi, θ, {∼ia}a∈A) where for all a ∈ A
and all w,w′ ∈ W, we put:
∗∗Note that we lump two notions of sight under one heading. A more general definition

would be of sight (n,m), where n specifies the sight of network structure, while m specifies
sight of behavior.
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Figure 3. Adoption de re vs. adoption de dicto. We illustrate an ETM with threshold
θ = 1/2 and two possible worlds. Should b adopt or not? He knows de dicto that enough
neighbors have adopted, but he does not know so de re; he knows that at least half of his
neighbors have adopted, but he doesn’t know which half.

• Bi(w) = B(w) ∪
{
a ∈ A : ∀v ∼a w |N(v)(a)∩B(v)|

|N(v)(a)| ≥ θ
}

and

• w ∼ia w′ iff i) w ∼a w′ and ii) ∀b ∈ Nn(w)(a) : b ∈ Bi(w)⇔ b ∈ Bi(w′).

The first condition tells us that the new set of adopters at world w includes
the previous set of adopters B(w) (hence agents do not give up their previ-
ously adopted behavior) and it includes also all agents who, as far as they
know, are certain of the fact that enough of their own neighbors (given by
θ) have adopted already. The second condition ensures that the informed
update of an ETM with sight n is again an ETM with sight n, i.e., agents
can still see the (new) behavior of n-distant neighbors after the update.

Updating de Dicto and Updating de Re. The above informed update
policy is defined using de dicto knowledge of others’ behavior: if an agent
knows that enough others will adopt, so should she, ignoring that she might
not know exactly who will adopt. For an illustration, see Figure 3.

A de re update is definable by setting

Bi(w) = B(w) ∪
{
a ∈ A :

b ∈ A : ∀v ∼a w, |N(v)(a) ∩B(v)|
|N(v)(a)|

≥ θ
}
.

While both rules are interesting, in the remainder of this paper we opt for
the de dicto version as it expresses in a stronger sense that agents can fully
utilize all their information while staying in the spirit of threshold models.

Learning the Distribution. When performing informed updates, agents
may learn about the initial distribution of behavior in the network. Figure
4 provides an example. The learning occurs as agents’ information cells may
be restricted when other agents change their behavior. If such sufficient such
restrictions occur, an agent may be left with a singleton information cell that
allows only for a unique initial state. In this case, the agent will have learned
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Figure 4. The learning process for agent d (bottom center) under informed adoption, in
an ETM with threshold θ ≤ 1

2
and sight 1. With sight 1, the ETM contains the 8 depicted

possible worlds/states. The last states to reach fixed points at time 5 are states w2 and w4.
Epistemic relations are drawn only for d to simplify representation. Note the development
of the indistinguishability relation from M0 to M5: as the updated ∼′d is a restriction
of ∼ d to states where both c and e’s behaviors are identical, d learns about the initial
distribution. Learning may or may not be complete: compare the development of states
w1 and w2.

the initial distribution. This occurs in the initial state w2 of Figure 4, but
not in w1. The information conveyed through perceiving the dynamics of the
informed update policy may thus teach agents of the network at distances
greater than their initial sight.

Implicit Information and Redundant Knowledge. Under some epis-
temic conditions, the epistemic and non-epistemic diffusion policies are equi-
valent. If each agent always knows at least who her neighbors are and how
they are behaving, then the two policies give rise to the same diffusion dy-
namics, in the following sense: the diffusion dynamics resulting from the
informed update on an ETM reduces to the diffusion dynamics under the
initial (non-epistemic) update applied to each possible world of the ETM.
This is the content of Proposition 3.1 below.

Proposition 3.1 relates two important insights. The first is that standard
threshold models make the implicit epistemic assumption that agents know
their neighborhood and its behavior. The second is that knowledge about
more distant agents is redundant as it will not affect behavior.

To prove the result, we first define how to generate a (non-epistemic)
threshold model from a possible state of an epistemic threshold model:
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Definition 3.5 (State-Generated Threshold Model (SGM)). Let an ETM
M = (W,A, N,B, θ, {∼ a}a∈A) be given and let w ∈ W and a ∈ A. The
state-generated threshold model M(w) = (A, NM(w), BM(w), θ) is given by:

NM(w)(a) = N(w)(a), and

a ∈ BM(w) ⇔ a ∈ B(w).

Proposition 3.1. Let M = (W,A, N,B, θ, {∼ a}a∈A) be an ETM and w ∈
W. Let Mi and M(w) be respectively the informed update and state-
generated models of M. Let Mi(w) be the state-generated model of Mi

and let M(w)′ be the non-epistemic threshold update of M(w). Then

if M has sight n ≥ 1, then
Mi(w) =M(w)′.

Proof. As neither the non-epistemic threshold update nor the informed
update changes the set of agents, the network or the threshold, it need only
be shown that Bi(w) = B(w)′ where Bi(w) is the behavior set of Mi(w)
and B(w)′ is the behavior set of M(w)′.

Assume a ∈ B(w). Then it follows that a ∈ B(w)i within Mi, by
monotonicity of the informed update. Hence we also obtain a ∈ BMi(w)

in Mi(w) by Definition 3.5 of SGMs. From a ∈ B(w) it also follows that
a ∈ BM(w) by defintion of SGMs. By monotonicity of the non-epistemic
threshold update, we have a ∈ B′M(w) in M(w)′.

Assume that a /∈ B(w). Then a /∈ BM(w) by definition 3.5 of SGMs. By

definition, a ∈ B(w)i iff ∀v ∼ aw : |N(v)(a)|∪B(v)
|N(v)(a)| ≥ θ. AsM has sight n ≥ 1,

∀v ∼ aw, N(v)(a) = N(w)(a) and b ∈ N(w)(a) implies b ∈ B(w) ⇔ b ∈
B(v). Hence |N(w)(a)|∪B(w)

|N(w)(a)| ≥θ. As N(w)(a) = NM(w)(a) and B(w) = BM(w),

it follows that
|NM(w)(a)|∪BM(w)

|NM(w)(a)|
≥ θ iff a ∈ BM(w). a

Proposition 3.1 provides a precise, but partial, interpretation of the
dynamics of non-epistemic threshold models as a process of information-
dependent behavior diffusion. As witnessed by its proof, only the immedi-
ate neighborhood of agents matters for the adoption behavior in a threshold
model. A next step is to investigate how this changes when agents are
equipped with predictive abilities; see Section 4.

The interpretation is partial, since the restriction to the case of sight
n ≥ 1 does not fully characterize the standard threshold dynamics as given
in Def. 2.4. In the case of no sight (n = 0), the agent may have uncertainty
about some neighbor b’s behavior, and might not even know exactly who are
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all her neighbors; but she might still know that a large enough proportion of
these neighbors have adopted B: in which case she will still update according
to the standard threshold dynamics!

Situations in which neighbors lack knowledge of some direct neighbors’
behavior are interesting in that they may cause the diffusion process to slow
down compared to the standard update policy:

Proposition 3.2. There exists an ETMM = (W,A, N,B, θ, {∼ a}a∈A) with
sight n < 1 such that

BMi(w) ⊂ BM(w)′ ,

where Mi and M(w) are respectively the informed update and state-gen-
erated models of M, and Mi(w) is the state-generated model of Mi and
M(w)′ is the non-epistemic update (Def. 2.4) of M(w).

Proof. By construction: let M = (W,A, N,B, θ, {∼ a}a∈A) with W =

{w, v}, w ∼a v, N(w)(a) = N(v)(a) but |N(w)(a)∩B(w)|
|N(w)(a)| ≥ θ > |N(v)(a)∩B(v)|

|N(v)(a)| .

Then a /∈ BMi(w), but a ∈ BM(w)′ . a

Figure 5 illustrates this “slower” diffusion process.

3.3. Knowledge and Cascades

In Section 2.4, we have shown how our language can capture complete cas-
cades and the existence of clusters able to block diffusion, as captured by
the Cluster Theorem: a cascade will be complete if and only if the network
does not contain a cluster of non-yet-adopters of density greater than 1− θ.

Given proposition 3.1 above, the cluster theorem still holds for any epis-
temic threshold model with sight at least 1. Moreover, the existence of a
relevant cluster will still block a cascade under the informed update policy,
independently of how much agents know. However in general, considering
any epistemic threshold model with any sight, the cluster theorem cannot
be maintained as it was stated. What we observe is that the left to right
direction of the cluster theorem still holds for epistemic threshold models
with sight less than 1: indeed, if a complete cascade occurs, then the net-
work does not contain a cluster of density greater than 1− θ. However, the
converse does not hold in these models with sight less than 1. We briefly
explain this point in more detail. Given proposition 3.2 above, we know that
the diffusion process, via the informed update rule, in an ETM with sight
< 1 might be “slower” than the process based on the non-epistemic thresh-
old update policy. Indeed, the lack of knowledge may for instance block a



22 A. Baltag, Z. Christoff, R.K. Rendsvig and S. Smets

Figure 5. A diffusion process “slowed down” by the uncertainty of agent b, with threshold
θ = 1

2
. Consider the situation in world w: agent a has adopted, but agent b does not

know it. Therefore, agent b will not adopt immediately. The diffusion according to the
informed update policy in state w will only stabilize after applying the informed update
rule twice. Note that under the non-epistemic threshold update, or if agent b knew whether
a has adopted, the situation depicted in w would stabilize after only one step (i.e. the
non-epistemic threshold update of M0(w) gives us directly M2(w)).

cascade, despite the absence of a cluster-obstacle. Figure 6 illustrates this
difference.

3.4. The Epistemic Logic of Threshold-Limited Influence

To reflect the epistemic dimension in a formal syntax, the language L is
extended by adding the standard Ka modalities reading “agent a knows
that”, for each agent a ∈ A.

Definition 3.6 (Languages LK[] and LK). Let the set of atomic propositions
be given by {Nab : a, b ∈ A}∪{βa : a ∈ A} for a finite set A. Where a, b ∈ A,
the formulas of LK[] are given by

ϕ := Nab | βa | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [adopt]ϕ
The formulas of the “static” fragment LK are those of LK[] that do not
involve the [adopt] modality.

As standard, we can use the given language to define the other Boolean
operators for disjunction and implication and introduce 〈adopt〉 as the dual
of [adopt].
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Figure 6. A diffusion process “blocked” by the uncertainty of agent b, with θ = 1
2
.

Consider the situation in world w: agent a has adopted, but agent b does not know
it. Therefore, agent b will not adopt (under the informed adoption rule). Note that under
the non-epistemic threshold update, or if agent b knew that a has adopted, the situation
depicted in state w would evolve into a complete cascade.

Definition 3.7 (Semantics for LK[] with Informed Update). Formulas ϕ,ψ
from LK[] are interpreted over an ETMM = (W,A, N,B, θ, {∼a}a∈A) with
sight n, and w, v ∈ W:

M, w |= βa iff a ∈ B(w)

M, w |= Nab iff b ∈ N(w)(a)

M, w |= ¬ϕ iff M, w 2 ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= Kaϕ iff for all v ∈ W such that v ∼a w,M, v |= ϕ

M, w |= [adopt]ϕ iff M′, w |= ϕ, where M′ is the informed
update of M as specified in Def. 3.4 .

3.4.1. Axiomatization.

In the specification of the epistemic reduction axioms, the following two
syntactic shorthands are used:

Abbreviation. For any k ∈ N ≥ 1, we introduce the abbreviation Nk
ab by

induction, with the formula Nk
ab expressing that b is k-reachable from a.

N1
ab : = Nab

Nk+1
ab : = Nk

ab ∨
∨
c∈A

(
Nk
ac ∧Ncb

)

Abbreviation. For B ⊆ A, we introduce the abbreviation B = Nk
aβ

+

refering to the set of agents which are 1) k-reachable from a and 2) will have
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adopted after the next update:(
B = Nk

aβ
+
)

:=
∧
b∈B

(
Nk
ab ∧ [adopt]βb

)
∧
∧

b∈A\B

(
Nk
ab → [adopt]¬βb

)
.

Using these shorthands, the axioms for Epistemic Threshold Models and
the dynamics of Informed Update are given in Table 2.

The reduction law Ep.Red.Ax.β states that a has adopted β after the
update just in case she had already adopted it before the update, or she
knew that she had a large enough proportion of neighbors who had already
adopted it before the update. Ep.Red.Ax.K.sight.n captures that an agent
knows that ϕ will be the case after the update if, and only if, she knows that,
if those very agents who actually are going to adopt do adopt, then ϕ will
hold after the update.

Definition 3.8 (Epistemic Logic of Threshold-Limited Influence). The logic
Lθn is comprised of the axioms and rules of propositional logic and the
axioms and rules of Table 2.

Definition 3.9 (Class: Cθn). For θ ∈ [0, 1] and n ∈ N, the class Cθn consists
of all ETM’s with threshold θ and sight n.

The logic Lθn is sound and complete with respect to the corresponding
class of models Cθn:

Theorem 3.1 (Soundness, Completeness, Expressivity and Decidability). Let
θ ∈ [0, 1] and n ∈ N. For any ϕ ∈ LK[],

|=Cθn ϕ iff `Lθn ϕ.

The language LK[], endowed with the informed update semantics, has the
same expressivity as its static counterpart LK . Moreover, Lθn is decidable.

Proof. Soundness: Let M = (W,A, N,B, θ, {∼a}a∈A) be an epistemic
threshold model with sight n. Let a, b ∈ A and w, v ∈ W. Then (M, w)
satisfies the S5 axioms as all ∼a are equivalence relations and satisfies the
axioms reoccuring from Table 1 for the same reasons non-epistemic threshold
models satisfy them. To see that (M, w) satisfies Ep.Red.Ax.β, let Mi

be the informed update of M. Then M, w |= [adopt]βa iff Mi, w |= βa

iff a ∈ Bi(w) = B(w) ∪
{
b ∈ A : ∀v ∼b w |N(v)(b)∩B(v)|

|N(v)(b)| ≥ θ
}

iff M, w |= βa

or a ∈
{
b∈A:∀v∼bw |N(v)(b)∩B(v)|

|N(v)(b)| ≥θ
}
. Using the same syntactic decoding as in

the proof of Theorem 2.1, we obtain that a ∈
{
b∈A:∀v∼bw |N(v)(b)∩B(v)|

|N(v)(b)| ≥θ
}

iff
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry∨
b∈A

Nab Seriality

Knowledge Axioms

Kaϕ→ ϕ (∗) Ax.T

Kaϕ→ KaKaϕ (∗) Ax.4

¬Kaϕ→ Ka¬Kaϕ (∗) Ax.5

Knowledge-Network Axioms

(Nn
ab ∧ βb)→ Kaβb (∗) Known Behavior

(Nn−1
ab ∧Nbc)→ KaNbc (∗) Known Neighbors

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔ ¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ ψ ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨Ka(βN(a) ≥ θ) (∗) Ep.Red.Ax.β

[adopt]Kaϕ↔
∨
B⊆A

(B = Nn
a β

+ ∧Ka (B = Naβ
+ → [adopt]ϕ))

(∗) Ep.Red.Ax.K.sight.n

Inference Rules

From ϕ and ϕ→ ψ, infer ψ Modus Ponens

From ϕ, infer Kaϕ for any a ∈ A (∗) Nec.Ka

From ϕ, infer [adopt]ϕ Nec.[adopt]

From ϕ and ψ ↔ χ, infer ϕ[ψ/χ] Repl. of Equiv.

Table 2. Axioms and rules for the Epistemic Logic of Threshold-Limited Influence for sight
n. Subscripts a, b are arbitrary over A. Entries marked (∗) are new or modified relative
to Table 1.
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M, w |= Ka

(
βN(a) ≥ θ

)
. HenceM, w |= [adopt]βa iffM, w |= βa orM, w |=

Ka

(
βN(a) ≥ θ

)
.

For Ep.Red.Ax.K.sight.n, let againMi be the informed update ofM.
Then

M, w |=
∨
B⊆A

((B = Nn
a β

+) ∧ Ka ((B = Naβ
+)→ [adopt]ϕ))

iff

∃B ⊆ A :M, w |= (B = Nn
a β

+) ∧ Ka ((B = Naβ
+)→ [adopt]ϕ)

iff

∃B ⊆ A :M, w |=
∧
b∈B

(Nn
ab ∧ [adopt]βb) ∧

∧
b∈A\B

(Nn
ab → [adopt]¬βb) and

M, w |=

Ka

(( ∧
b∈B

(Nn
ab ∧ [adopt]βb) ∧

∧
b∈A\B

(Nn
ab → [adopt]¬βb)

)
→ [adopt]ϕ

)
iff

∃B ⊆ A : B = Nn(w)(a) ∩Bi and

for all v ∼a w, if B = Nn(v)(a) ∩Bi, then Mi, v |= ϕ
(∗)
iff

∃B ⊆ A : B = Nn(w)(a) ∩B′ and

if B = Nn(w)(a) ∩Bi, then Mi, w |= Kaϕ

(from (∗) as M is sight n, so Nn(v)(a) ∩Bi = Nn(w)(a) ∩Bi for all
v ∼a w)

iff

Mi, w |= Kaϕ

(as such a B always exists)

iff

M, w |= [adopt]Kaϕ.

Completeness (sketch): It can be shown by induction that for all ϕ ∈ LK[],
there exists a ϕ′ ∈ LK such that `Lnθ ϕ ↔ ϕ′. Completeness then fol-
lows from the standard proof of completeness for S5 over Kripke models
with equivalence relations and the straightforward insight that the network
axioms characterize the imposed network conditions.

Expressivity and Decidability (sketch): May be shown by the reduction ax-
ioms. a
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Figure 7. An ETM with no uncertainty about the actual state w, developing according
to informed update. B is marked by gray, and a threshold θ = 1/2 is assumed. At time 0
(w0), only a has adopted. According to informed adoption, b adopts at time 1. At time
2, c also adopts the behavior, etc.

4. Prediction Update

In defining our informed update rule based on epistemic threshold models,
we ensure that agents do not act on information they do not possess. Such
agents are however still limited, in that they do not take all their available
information into account. This section investigates effects of agents that are
allowed to reason about more than only the present behavior of the network.
In particular, we focus on providing agents with predictive power.

Consider the ETM illustrated in Figure 7, with a given dynamics that
runs according to a non-epistemic or informed adoption policy.
If one assumes that agents (nodes) are not merely nomothetically influenced
by their neighbors, but rather are rational agents seeking to coordinate be-
havior with their neighbors [26], the dynamics in Figure 7 seems to miss the
target. In particular, as the network and behavior distribution are known
to c (and if the new behavior is considered the most valuable), the choice of
c not to adopt during the first update is irrational. As c knows that a has
adopted, he knows that b will adopt during the next update round. Hence
c also knows that he will successfully coordinate with more neighbors and
thus be better off in round 1 if he, too, has chosen to adopt. To represent
this “predictive rationality” we define a new, predictive, update mechanism.

Prediction Update as the Least Fixed Point. In defining “prediction
update”, we make use of the notion of a least fixed point. This is necessary
because of the circular character of prediction update: an agent adopts based
on the predicted behavior of her neighbors, but that behavior is in its turn
based on their predictions about the first agent’s behavior (among others),
etc.

This fixed point may be approximated using a chain of lower level pre-
dictions. The intuitive idea of the approximation may be illustrated using
Figure 7:
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Consider agent d’s reasoning about the behavior of agent c, with d
assuming that c acts in accordance with the (non-predictive) informed
update policy. Then d may predict that c will adopt during the
second round of updates. Hence, as d seeks to coordinate with c and
e and has an adoption threshold of θ = 1/2, d may act preemptively :
To maximize the number of rounds in which she has adopted if a θ
fraction of neighbors have adopted, d may update already in round
2, together with c.

In this case, d may be thought of as a level 1 predictor : She
assumes no-one else makes predictions, that the others are of level 0.
However, d may come to think that c is as smart as she is, i.e., that
also c is a level 1 predictor. Assuming this, d now foresees that c will
not wait till round 2 to adopt, but will instead adopt B already in
round 1; based on this prediction about c’s predictions, d may now
also adopt in round 1. In this case, d is a level 2 predictor, etc.

If this reasoning is pushed to its fixed point, it will “catch up with itself”: in
the fixed point, every agent will be a level ω predictor, predicting under the
assumption that all others are the same. This is the trick we use to ensure
that agents draw the most powerful conclusion available.

Common Knowledge of Predictive Rationality and of Complete
Information Use. Prediction update incorporates two epistemic assump-
tions. One is that it is common knowledge that all agents act in accordance
with the prediction update policy. This assumption means that agents do
not only predict the systems behavior as if everybody else was acting in
accordance with informed update. Rather, agents foresee the behavior of
other predictors.

The second assumption is that it is common knowledge that predictors
use all their available information (about the network structure, the current
behavior spread and information available to others) as far into the future
as possible when determining their next action.

Prediction Update Preliminaries. Before we define the prediction up-
date, a few preliminaries are required. An example of prediction update is
given in Figure 8 which follows the definitions.

Definition 4.1 (The Lattice of Behaviors and the Informed-Update Map).
For a given ETM M = (W,A, N,B, θ, {∼a}a∈A) let P(A)W be the set of
all possible “behaviors”, i.e. all functions f : W → P(A). We can convert
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this set into a lattice, by defining a partial order � on P(A)W , given by:

f � g ⇔ f(w) ⊆ g(w).

The informed-update map is a function

ΓB : P(A)W −→ P(A)W ,

mapping any behavior f ∈ P(A)W to some behavior ΓB(f), given by, for all
w ∈ W,

ΓB(f)(w) = B(w) ∪
{
a ∈ A : ∀v ∼a w,

|N(v)(a) ∩ f(v)|
|N(v)(a)|

≥ θ
}
.

Lemma 4.1. Let M, P(A)W , � and ΓB be as in Definition 4.1. Then
1) (P(A)W ,�) is a finite, and hence complete, lattice.
2) Informed update ΓB is an order-preserving (monotonic) map.

Proof. 1) For any finite set A, (P(A),⊆) is a finite and hence complete
lattice with the order given by the set-theoretic inclusion. If (L,v) is a
finite lattice and W a finite set, then (LW ,≤) is also a finite lattice when
LW = {f |f : W −→ L} and f ≤ g iff ∀w ∈ W, f(w) v g(w). Hence, given
thatW is a finite set, also (P(A)W ,�) is a finite lattice with the order given
by definition of �. Every lattice over a finite set is also complete.
2) Let f, f ′ ∈ P(A)W , and let f � f ′. Hence ∀w ∈ W, f(w) ⊆ f ′(w). Pick
an arbitrary u ∈ W. Then

ΓB(f)(u) =B(u) ∪
{
a ∈ A : ∀v ∼a u,

|N(v)(a) ∩ f(v)|
|N(v)(a)|

≥ θ
}

ΓB(f ′)(u) =B(u) ∪
{
a ∈ A : ∀v ∼a u,

|N(v)(a) ∩ f ′(v)|
|N(v)(a)|

≥ θ
}
.

Let the second terms of the unions be denoted A and A′, respectively.

For all v ∈ W, as f(v) ⊆ f ′(v), |N(v)(a)∩f(v)|
|N(v)(a)| ≥ θ implies |N(v)(a)∩f ′(v)|

|N(v)(a)| ≥
θ. Hence A ⊆ A′, so ΓB(f)(u) ⊆ ΓB(f ′)(u). As u was arbitrary, ΓB(f) 4
ΓB(f ′). Hence ΓB is order-preserving. a

Definition 4.2 (Least Fixed Point). LetM = (W,A, N,B, θ, {∼a}a∈A) be
an ETM, and P(A)W ,� and ΓB be as in Definition 4.1. The least fixed point
of ΓB, denoted by lfp(ΓB), is the unique behavior x ∈ P(A)W such that

ΓB(x) = x, and

∀y ∈ P(A)W , if ΓB(y) = y, then x � y
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Theorem 4.1 (lfp Existence, Uniqueness and Approximation). Let be given
M, (P(A)W ,�) and ΓB as in Definition 4.1. Then lfp(ΓB) exists. More-
over, this least fixed point is unique, and it can be reached by finite iterations
of the informed-update map starting on the bottom element of the lattice.
More precisely: if we put

Γ0
B = ⊥, where ⊥(w) = ∅ for all w ∈ W,

Γn+1
B = ΓB(ΓnB), for all n ≥ 1,

then there exists some N ∈ N, such that the sequence stabilizes at stage N ,
and we have: lfp(ΓB)(w) = ΓNB (w) = ΓN+1

B (w).

Proof. By Lemma 4.1, ΓB is a monotonic map on the complete lattice
(P(A)W ,�). Hence, the least fixed point lfp(ΓB) exists by the Knaster-
Tarski Fixed Point Theorem (see e.g. [13, p. 50]). Moreover, since our
lattice is finite, the proof of that theorem shows in fact that lfp(ΓB) is
reached at some finite iteration ΓNB . a

Defining Prediction Update. Given the previous paragraph, we may
now define prediction update as follows:

Definition 4.3 (Prediction Update). Let M = (W,A, N,B, θ, {∼a}a∈A)
be an ETM of sight n, and let (P(A)W ,�) be as in Lemma 4.1. Let ΓB :
P(A)W −→ P(A)W be given as in Definition 4.1.

The prediction update ofM is the ETMMp = (W,A, N,Bp, θ, {∼pa}a∈A)
where ∀w,w′ ∈ W,

Bp(w) = lfp(ΓB)(w), and

w ∼pa w′ iff i) w ∼a w′, and

ii) ∀b ∈ N≤n(w)(a) : b ∈ Bp(w)⇔ b ∈ Bp(w′)

Theorem 4.1 is important, since it ensures first, that our prediction up-
date is well-defined, and second that, when engaged in prediction update
agents do not run the risk of falling into infinite chains of reasoning about
each other (which presumably would take an infinite time): they can com-
pute the resulting prediction (and update) in finitely many steps.

Example, Sanity Check and Proof of Concept. The “irrational” be-
havior illustrated in Figure 7 is solved by prediction update. The dynamics
are illustrated in Figure 8. Notice that now c adopts B as soon as she knows
B is preferred.
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Figure 8. The prediction update of a sight 2 ETM with actual state w, θ = 1/2. Agents
a, b, c know the actual state; d, e are uncertain. The development of the five stages is given
according to informed adoption; states w0–w4 are from Figure 7. The arrow shows the
prediction update of the actual world. With informed update, w reaches a fixed point
after 4 updates; with prediction update, it reaches the same fixed point after only 2 steps.
Due to uncertainty, the prediction update does not jump to the fixed point in 1 step: as
d does not know whether a has adopted at time 0, she does not know that c will adopt
under prediction update. Hence, she will refrain herself from adopting until w3. Similar
considerations goes for e.
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Bounded Rationality. Prediction assumes that agents have unbounded
rationality (maximal predictive and reasoning power given the available in-
formation). A bounded rationality version of prediction update could be de-
fined, in which agents can only compute a fixed finite number n of steps of
the prediction chain. A natural way of doing this would be by defining an up-
date that uses ΓnB instead of lfp(ΓB). When n is low enough, the dynamics
of bounded-rationality update would differ from the dynamics of unbounded
prediction update. We leave the exploration of bounded-rationality updates
for future work.

Iterated Dynamics, Fixed Point, Cascades, Speed of Convergence.
When any of our adoption updates is iterated, a long-term dynamics is
produced, in the form of an infinite sequence of models M,M(1),M(2), . . ..
Since all the update rules considered in this paper are inflationary, a fixed
point is always eventually reached: a stage N such that M(N) = M(N+1).
The extent of the cascade produced by each update type on an initial model
M is given by the behavior B(N) in the fixed point M(N), which comprises
the set of all agents who will eventually adopt B (in a given world). A full
cascade is produced if all agents will eventually adopt B, i.e. BN (w) = A.
It is easy to see that prediction update accelerates the cascading behavior in
comparison to informed updated : the fixed point of the adoption process is
typically reached earlier if the agents use prediction update than if they use
informed update. A full analysis of the relationship between the three types
of update is left for future work. But a concrete example in this sense is
given below.

4.1. On the Fixed-Point Logic of Prediction Update

The above stated prediction update rule in Definition 4.3 can now be used
to give a new semantics to the [adopt] modality in the logic language LK[].

Definition 4.4 (Prediction Update Semantics). Given θ ∈ [0, 1], n ∈ N
and any ETM M ∈ Cθn, the satisfaction relation for the prediction update
semantics can be defined using the same truth clauses as in Def. 3.7, except
for the formulas of the form [adopt]ϕ, for which we put:

M, w |= [adopt]ϕ iff Mp, w |= ϕ, where Mp is the prediction update of M.

Axiomatization. We present an axiomatic system that is sound for the
logic of prediction update, although completeness remains an open question.
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Fixed Point Laws

[adopt]βa ↔ βa ∨Ka([adopt]βN(a) ≥ θ) Fixed Point Axiom

` {ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)}a∈A
` {ϕa → [adopt]βa}a∈A

Least Fixed Point
Inference Rule

Table 3. Fixed point laws of prediction update logic Lpredictθn . The fixed point axiom takes
the place of the informed update reduction axiom and the least fixed point inference rule
is added.

Note that in this section, the [adopt] modality is a fixed point operator and
hence may no longer be reduced away. In contrast to the informed update
logic, the prediction update logic appears to be strictly more expressive than
its static counterpart.

To state the proof system, we first generalize the syntactic shorthand
introduced in Definition 2.3.

Abbreviation. Given a tuple of formula’s (ϕb)b∈A, one for each agent
a ∈ A, we introduce the following abbreviation:

Ka(ϕN(a) ≥ θ) := Ka

 ∨
{
G⊆N⊆A: |G||N|≥θ

}
(∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G

ϕb

) .

Here Ka(ϕN(a) ≥ θ) denotes that a knows that larger than a θ fraction of her
neighbors has the property ϕ (where for instance ϕb can stand for Nab∧βb).
In particular, Ka([adopt]βN(a) ≥ θ) expresses that a knows that at least a
θ fraction of her neighbors will have adopted β after the application of the
prediction update rule.

Definition 4.5 (Prediction Logic). The logic Lpredictθn is comprised of the
axioms and rules of propositional logic and the axioms and rules of Table 2
with the only change that the axiom Ep.Red.Ax.β is replaced by the Fixed
Point Axiom in Table 3 and we extend the set of rules of the logic with the
least fixed point inference rule in Table 3.

The Fixed Point axiom of Table 3 is almost identical to Ep.Red.Ax.β of
Table 2, except for the inclusion of the [adopt] modality on the right-hand
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side. This states that a will adopt after the prediction update iff she has
already adopted, or if she knows that enough of her neighbors will have
adopted after having applied the same predictive reasoning she uses.

The Least Fixed Point Inference rule reflects the fact that prediction
update is defined as a least fixed point operator.

The proposition below establishes soundness of Lpredictθn . As for com-
pleteness, the proof would not go through the standard methods used in the
previous sections. We therefore leave it for future research. However, we
have reasons to make the following

Conjecture: The system Lpredictθn is a complete axiomatization of predictive
update logic over the class Cθn.

Proposition 4.1. The axiom and derivation rule of Table 3 are sound with
respect to epistemic threshold models with sight n, using the prediction
update as our semantics for the [adopt] modality.

Proof. LetM be a arbitrary finite ETM with sight n, domain W contain-
ing state w and a, b ∈ A.

Fixed Point Axiom. M, w |= [adopt]βa iff Mp, w |= βa iff a ∈ Bp = B ∪{
b ∈ A : ∀v ∼b w, |N(v)(b)∩Bp|

|N(v)(b)| ≥ θ
}

iffM, w |= βa or ∀v ∼a w, |N(v)(a)∩Bp|
|N(v)(a)| ≥

θ. The right disjunct obtains iff

∀v ∼a w,∃G,N ⊆ A : G ⊆ N and |G|
|N | ≥ θ and

G ⊆ B̃ and N = N(v)(a)

iff

∀v ∼a w,∃G,N ⊆ A : G ⊆ N and |G|
|N | ≥ θ and

∀b ∈ G, Mp, v |= βb and ∀b ∈ N ,
Mp, v |= Nab

iff

∀v ∼a w,Mp, v |=
∨{

G⊆N⊆A: |G||N|≥θ
}
( ∧
b∈N

Nab ∧
∧
b/∈N
¬Nab ∧

∧
b∈G

βb

)

iff

∀v ∼a w,M, v |=
∨{

G⊆N⊆A: |G||N|≥θ
}
( ∧
b∈N

Nab ∧
∧
b/∈N
¬Nab ∧

∧
b∈G

[adopt]βb

)
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iff

M, w |= Ka

 ∨{
G⊆N⊆A: |G||N|≥θ

}
( ∧
b∈N

Nab ∧
∧
b/∈N
¬Nab ∧

∧
b∈G

[adopt]βb

)
iff

M, w |= Ka([adopt]βN(a) ≥ θ)

Hence we concludeM, w |= [adopt]βa iffM, w |= βa∨Ka([adopt]βN(a) ≥ θ).

Least Fixed Point Inference Rule. Let an arbitrary finite ETMM with
sight n and domain W be given. Where {ϕa}a∈A is a set of sentences from
LK[], let ϕ ∈ P(A)W with ϕ(w) = {a ∈ A : M, w |= ϕa}. Moreover, let

Γϕ : P(A)W −→ P(A)W , given by

Γϕ(f) = h such that

∀w ∈ W, h(w) = ϕ(w) ∪
{
a ∈ A : ∀v ∼a w,

|N(v)(a) ∩ f(v)|
|N(v)(a)|

≥ θ
}
.

The same reasoning used in the proof of Lemma 4.1 shows that each such
Γϕ is order-preserving.

Let β ∈ P(A)W be determined by {βa}a∈A and let []β ∈ P(A)W be
determined by {[adopt]βa}a∈A. Let Γβ be given by the above construction.

Given the prediction semantics of [adopt] and the fact (cf. Theorem 4.1)
that Bp = lfp(ΓB) = sup{ΓBn(⊥) : n ∈ N}, we may conclude that

[]β = Γβ([]β) (6)

is the least fixed point of Γβ.

Assume for some {ϕa}a∈A that `
{
ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)

}
a∈A . This

implies

`
∧
a∈A

(ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)). (7)

From {ϕa}a∈A and {βa∨Ka(ϕN(a) ≥ θ)}a∈A we may define functions ϕ and

βK, as specified above. Now notice that βK = Γβ(ϕ). Hence, for (7) to be
satisfied, we have that

ϕ = Γβ(ϕ).

Given that (6) is the least fixed point of Γβ, we have that ϕ = Γβ(ϕ) implies

[]β � ϕ, so



36 A. Baltag, Z. Christoff, R.K. Rendsvig and S. Smets

∀w∀a : a ∈ []β(w)⇒ a ∈ ϕ(w) so
∀w∀a : w |= [adopt]βa ⇒ w |= ϕa so
∀w∀a : w |= [adopt]βa → ϕa

a

5. Alternative Adoption Policies

In the previous sections, we have presented three diffusion policies: one de-
pending solely on whether the agents’ neighbors have adopted (the “thresh-
old model update” from Def. 2.4); one depending on knowledge of this fact
(the “informed update” of Def. 3.4), and one depending on the anticipation
of this fact (the “prediction update” of Def. 4.3). This section questions some
in-built assumptions of these policies and discusses possible alternatives.

5.1. Enlarging the Sphere of Influence

The adoption policies hitherto presented rely on the idea that an agent will
adopt if (she knows that) enough of her direct neighbors (will) have adopted.

For certain applications, decisions are made that are based not only on
actions of direct neighbors, but on the population at large. A case in point
is the decision of whether to support a revolution: the relevant factor is
then whether a big enough fraction of the total population supports the
revolution, not whether enough of one’s direct neighbors do so.

Generally, such policies may be obtained by enlarging the “sphere of
influence” of agents beyond their direct neighbors. A natural choice in the
epistemic setting is to fit the “sphere of influence” to agents’ “sphere of
sight” (in models of sight n). The influence principles would then become:
the agent adopts if (he knows that) enough of his n-distant neighbors (will)
have adopted.

In the revolution case, agents might be influenced into adopting only
if (they know that) enough agents within the whole network (will) have
adopted. A suitable “globalized” version of the prediction update from
Def. 4.3 may be defined as follows:

Definition 5.1 (Global Prediction Update). Let be given a finite sight n
model,M = (W,A, N,B, θ, {∼a}a∈A), and let (F,≤) be as in Definition 4.3.
The global prediction update of M is then M′ = (W,A, N, B̃, θ, {∼′a}a∈A)
where:

• B̃ is such that:
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– ∀w ∈ W, B̃(w) = B(w) ∪ {a ∈ A : ∀v ∼a w, |A∩B̃(v)|
|A| ≥ θ}

– ∀f ∈ F , if ∀w ∈ W, f(w) = B(w) ∪ {a ∈ A : ∀v ∼a w, |A∩f(v)||A| ≥ θ},
then B̃ ≤ f .

and

• w ∼′a v iff i) w ∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ B̃(w) iff b ∈ B̃(v).

5.2. Taking Chances

Prediction update has been defined to allow agents to take all their available
information into account in their decision making. In acting upon it, agents
act conservatively, as the information-dependent adoption policies defined
require absolute certainty : agents will adopt only when they know that
enough of the others (will) have adopted.

An alternative to such conservative behavior is a risky one, where agents
adopt whenever they consider it possible that enough people (will) have
adopted. In the revolution example, this means that agents would join the
revolution whenever they see a chance that enough of their neighbors (or of
the general population) would join.

Such chance taking behavior is captured as follows:

Definition 5.2 (Risky Prediction Update). Let a finite sight n model
M = (W,A, N,B, θ, {∼a}a∈A) and (F,≤) be as in Definition 4.3. The risky
prediction update ofM results in the modelM′ = (W,A, N, B̃, θ, {∼′a}a∈A)
where:

• B̃ is such that:

– ∀w ∈ W, B̃(w) = B(w) ∪ {a ∈ A : ∃v ∼a w, |N(v)(a)∩B̃(v)|
|N(v)(a)| ≥ θ}

– ∀f ∈ F , if ∀w ∈ W, f(w) = B(w)∪ {a ∈ A : ∃v ∼a w, |N(v)(a)∩f(v)|
|N(v)(a)| ≥

θ}, then B̃ ≤ f .

and

• w ∼′a v iff i) w ∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ B̃(w) iff b ∈ B̃(v).

To suitably capture e.g. a population of “risky revolutionaries”, the risky
prediction update should be suitably “globalized” by replacing N(v)(a) with
A everywhere in the definition.

Betting that just any uneliminated possibility is in fact the case is very
risky behavior. A natural way to weaken the epistemic requirement of abso-
lute certainty while still allowing for uncertainty to exist is to augment our
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framework with beliefs. Modeling beliefs using the plausibility orders of [5],
a middle ground between conservative and risky prediction update could be
defined. The natural definition would make agents adopt if enough neigh-
bors (are predicted to) have adopted in each of the worlds the agent considers
most plausible, i.e, if the agent believes enough neighbors (are predicted to)
have adopted.

5.3. Trendsetters vs. Followers

An assumption build into threshold models in general is that agents are
followers: even when they anticipate others’ behavior with the prediction
update, they only “anticipate their future following of others”. Agents are
thus reacting to others’ behavior, even when they are reacting fast.

An interesting alternative would be to utilize agents’ information to make
them proactive instead; to have trendsetters instead of followers. Adding a
few trendsetters to a network might induce behavior change towards B even
when no-one has adopted initially.

A simple trendsetting adoption policy would state that an agent should
adopt whenever she knows that if she were to adopt, then enough of her
neighbors will adopt afterwards. Such an adoption policy involves both coun-
terfactual and temporal reasoning, which complicates a predictive version.
A non-predictive version may be defined as follows:

Definition 5.3 ((a,w)-Counterfactual Behavior). Let be given an ETM
M = (W,A, N,B, θ, {∼a}a∈A) with a ∈ A, w ∈ W. Then the (a,w)-
counterfactual behavior of M is

BC(a,w)(v) =

{
B(v) ∪ {a} if v ∼a w
B(v) else

Definition 5.4 (Trendsetter Update). Let M = (W,A, N,B, θ, {∼a}a∈A)
be an ETM and let {F , T } be a partition ofA into sets of followers and trend-
setters. The trendsetter update of M results in the model
M′ = (W,A, N,B′, θ, {∼a}a∈A) with B′ given by ∀w ∈ W

B′(w) = B ∪
{
a ∈ F : ∀v ∼a w,

|N(v)(a) ∩B|
|N(v)(a)|

≥ θ
}

∪

{
a ∈ T : ∀v ∼a w,

|N(v)(a) ∩BC(a,v)(v)
′ |

|N(v)(a)|
≥ θ

}
where BC(a,v)(v)

′
is the (a, v)-counterfactual behavior set of M after in-

formed update.
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The trendsetter update may of course also be define in global and risky
versions.

6. Conclusions and Further Research

The paper has focused on two intertwined objectives. On the one hand, we
have developed models for the diffusion dynamics under uncertainty, based
on two natural epistemic variants of the standard threshold adoption rule:
the informed update, and the prediction update. On the other hand, we
presented logical frameworks for reasoning about diffusion dynamics. We
proved soundness and completeness for the logic of informed update, and
proposed a sound system for the logic of prediction update. The problem
of completeness for the later logic is an open question. In the following
paragraphs, we summarize our findings.

Threshold Models. The static setting of threshold models may be de-
scribed sufficiently using a propositional logic with proposition symbols that
are indexed by agents. On finite networks, threshold ratios may be encoded
together with other important structural notions, such as clusters of particu-
lar density. As the dynamics of threshold model update is deterministic and
state dependent, these may be described using a dynamic modality reducible
to the static language. The dynamic modality therefore does not add any
expressive power. We have shown that the logic for threshold-limited influ-
ence is sound and complete, and as the static fragment is stated in simple
propositional logic, one sees that this logic is also decidable.

Epistemic Threshold Models. Given the propositional logical represen-
tation of networks, the epistemic extension of the logic for threshold-limited
influence works as expected. As both the diffusion and learning mechanism
in the informed update are deterministic and state dependent, the dynamic
process that is induced by the dynamic operation can be captured by a
reducible dynamic modality. As such, this modality does not add any ex-
pressivity to the language. We have shown the epistemic logic of threshold-
limited influence to be both sound and complete. Again we can conclude
that this logic is decidable.

In epistemic threshold models, if agents’ behavior is dictated by that of
their direct neighbors, then knowledge of more distant agents is redundant.
To act as under the standard threshold model dynamics, knowledge of neigh-
bors’ behavior is however required. If this information is not available, the
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diffusion speed decreases. In the limit case where no information is available,
the diffusion process stops. Taken together, the most economical epistemic
interpretation of standard threshold models is that their dynamics embod-
ies an implicit epistemic assumption that exactly the network structure and
behavior of agents in distance 1 is known.

Epistemic Threshold Models with Prediction Update. Prediction
update allows agents to better coordinate with their neighbors in adopting
a spreading behavior, by using their information about the others’ future
behavior. As a result, prediction-update agents increase a network’s speed
of convergence. In the extreme case when the network and behavior dis-
tribution are common knowledge, the prediction update jumps in one step
to the fixed point of the standard threshold model update. But in general,
even describing the one-step dynamics of prediction update requires a dy-
namic fixed point operator, which is atypical of dynamic epistemic logic. As
a consequence, the logic of prediction update does not have full reduction
axioms: the dynamic modality seems to genuinely add expressivity in this
case. This poses technical challenges to obtaining a completeness proof.

Future Work. In future research we plan to work on a full comparative
analysis of the different update processes that we have outlined in this pa-
per. While convergence can be obtained for all different dynamic processes,
among the ones we studied, the prediction dynamics will be the fastest in its
convergence. In the limit case, where the network and behavior distribution
is common knowledge, the prediction update jumps in one step to the fixed
point of the standard threshold model update. We plan to tackle in another
paper the open problem about completeness of the logic of prediction up-
date. Besides this question, there are five other main directions for further
research:

A) develop the logical apparatus and the epistemic extension of the pos-
sible generalizations of threshold models discussed is Subsection 2.5; B) ex-
plore the alternative diffusion processes introduced in Section 5, both on
the logical, set theoretic and game theoretic levels. Their logics may be
developed, and their dynamics may be investigated with respect to limit be-
havior and speed of possible stabilization; (C) explore the dynamics induced
by boundedly-rational versions of predictive update; (D) explore the game
theoretic perspectives of game play on networks under uncertainty and in
particular the game structure underpinning the intuitive rationality of pre-
diction update; (E) investigate the epistemic and predictive versions of the
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non-inflationary adoption rules, such as the policy given by regular coordi-
nation game play on networks [26]. Such rules, that allow agents to unadopt
an already adopted behavior, can lead to very different limit behavior, e.g.
to a cyclic dynamics. Understanding the epistemic aspects of such oscillat-
ing behavior will require logical tools going beyond the fixed point theory
used in this paper.††
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[10] Christoff, Zoé, and Jens Ulrik Hansen, ‘A two-tiered formalization of social

influence’, in Davide Grossi, Olivier Roy, and Huaxin Huang, (eds.), Logic, Rational-

ity, and Interaction, vol. 8196 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, 2013, pp. 68–81.
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